Presentation is loading. Please wait.

Presentation is loading. Please wait.

How to Analyze of 2D NMR Spectra ( small molecules) 2009. 12. 28 노 정 래.

Similar presentations


Presentation on theme: "How to Analyze of 2D NMR Spectra ( small molecules) 2009. 12. 28 노 정 래."— Presentation transcript:

1 How to Analyze of 2D NMR Spectra ( small molecules) 2009. 12. 28 노 정 래

2 Pulse width (pw) FT 1H1H Conventional proton spectrum ( 1 H NMR)

3 1 H and 13 C NMR spectra (Chemical shifts,  )

4 Carbon spectrum ( 13 C NMR) FT 1H1H 13 C CHCl 3 (1% ) 13 C 1H1H 1H1H BoBo (Coupled carbon spectrum) coupling J CH

5 Pulse width (pw) 13 C BB 13 C 1H1H Carbon spectrum ( 13 C NMR) (Decoupled carbon spectrum) 1H1H 13 C CHCl 3 (1% )

6 13 CH 3 13 CH 2 13 CH 13 C C C C C H H H H H H Coupled Carbon Decoupled Carbon Nuclear Overhauser Effect (nOe)

7 Proton-Proton coupling constant (J HH ) J HH Not through space, but through bonds

8 - Hybridization of the atoms - Bond lengths - Bond angles and dihedral angles - Substituent effects - The presence of neighboring  -bonds J HH [Hz] signJ CH [Hz] signJ CC [Hz] sign 1J1J 125 ~ 250+30 ~ 80+ 2J2J 0 ~ 30-*-10 ~ 20+ / -< 20+ / - 3J3J 0 ~ 18+1 ~ 10+0 ~ 5+ 3+n J 0 ~ 7+ / -< 1+ / -< 1+ / - * Usually negative, but sometimes positive Factors influencing scalar coupling The order of magnitude and sign of scalar couplings

9 2-methylpent-1-en-3-ol Connectivity of protons and carbons

10 Men and their Partner (Direct Coupling)

11 Friendship of Partners (Indirect coupling)

12 Relation between Men and their friend’s partner (remote coupling)

13 Direct Detection New Techniques employed in modern NMR experiments low sensitivity (low natural abundance) long time for multidimensional NMR experiment high sensitivity short time for multidimensional NMR experiment 13 C 1H1H Indirect Detection (Inverse Detection) 13 C 1H1H

14 99%( inactive) 1% (active) 12 C 1H1H 13 C 1H1H labeling (70% 13 C) natural (1% 13 C) H-C-Cl 3 J CH =216 Hz

15 + = Comparison of spectrum using phase cycling and PFG Phase cycling ( it is necessary to select interested signals with several scans) scan 1 scan 2 sum PFG ( select interested signals or eliminate the unwanted signals with one PFG pulse One scan In case of dense sample - gives spectrum in short time - gives clean spectrum

16 PFG dz Field strength 1H1H x y Bo x y Pulse Field Gradient (PFG)

17 PFG x y x y x y Pulse Field Gradient (PFG)

18 Origin 2D Data  t  J t2t2 t1t1  t1t1

19 Production of 2D NMR spectrum FT (t 2 ) t2t2 t1t1 FT (t 1 ) t2t2 t1t1

20 1H1H 1H1H F1F1 F2F2 HaHa HbHb HaHa HbHb cross peakdiagonal peaks H a / H b COSY spectrum t1t1 t2t2 128 x 1024 (256 x 1024) 256 x 1024 (512 x 1024) 512 x 1024 (1024 x 2048) 90 COSY spectrum (COrrelation SpectroscopY) C HbHb C HaHa 2 J HH C HbHb HaHa 3 J HH 4 J HH 1 2 3 4 t1t1 t2t2 = 0-30 Hz = 0-18 Hz FT(t 1, t 2 )

21 C C CC C C HaHa HbHb HcHc HdHd HeHe a b c e d a b d c e diagonal peak → cross peak → diagonal peak COSY spectrum and its Interpretation a b d c e H b / H c

22 C C CC C C HaHa HbHb HcHc HdHd HfHf a b c f d a b e c f ( ) diagonal peak → cross peak → diagonal peak HeHe COSY spectrum and its Interpretation e d

23 C C CC C C HaHa HbHb HcHc HdHd HeHe a b/e c f d a d c f ( ) diagonal peak → cross peak → diagonal peak C HfHf Overlapped signals COSY spectrum and its Interpretation b c b d

24 TOCSY (TOtal Correlation SpectroscopY) d b c a acbdacbd t1t1 t2t2 128 x 1024 (256 x 1024) 256 x 1024 (512 x 1024) 512 x 1024 (1024 x 2048) 90 Mixing pulse 60~80ms C C CC HaHa HbHb HcHc HdHd 3 J HH 1 2 3 t1t1 t2t2 4 FT(t 1, t 2 ) TOCSY spectrum

25 C C CC C C HaHa HbHb HcHc HdHd HeHe a b/e c f d a d c f C HfHf d a c f TOCSY spectrum and its Interpretation

26 13 C CaCa CbCb HaHa HbHb 1H1H CaCa CbCb 1H1H HaHa HbHb HMQC (Heteronuclear Multiple Quantum Correlation) / HSQC (Heteronuclear Single Quantum Correlation) t1t1 t2t2 1/2J CH 128 x 1024 (256 x 1024) 256 x 1024 (512 x 1024) Pairing 1 H and 13 C Shifts by using the HSQC / HMQC spectrum = 125-250 Hz 1 J CH 13 C 1H1H CaCa CbCb O 1Ha1Ha 1Hb1Hb 1 3 t1t1 t2t2 4 1 J CH 2 FT(t 1, t 2 ) HSQC spectrum

27 C COCC O H H H H H H H H HMQC/HSQC spectrum and its Interpretation abcd ab c d CH 3, a CH 3, d CH 2, b 13 C 1H1H

28 HMBC (Heteronuclear Multiple Bond Correlation) t1t1 t2t2 128 x 1024 (256 x 1024) 256 x 1024 (512 x 1024) 90180 1/2J CH 1/2 n J CH Assignment of Nonprotonated 13 C’s on the basis of the HMBC spectrum FT(t 1, t 2 ) HMBC spectrum

29 CaCa CbCb OCcCc CdCd OHaHa HaHa HaHa HbHb HdHd HbHb HdHd HdHd a dbc a d b HMBC spectrum and its Interpretation 1H1H 13 C

30 diagonal peak → cross peak → diagonal peak NOESY/ROESY( Nuclear Overhauser Effect Spectroscopy) t1t1 t2t2 90 t1t1 t2t2 Mixing pulse 350 ms Mixing pulse 200 ms Determining Stereochemistry by using the NOESY / ROESY spectrum C C C HaHa HbHb HcHc NOE t1t1 t2t2 a b c 2 J HH NOE / COSY NOE NOESY ROESY FT(t 1, t 2 ) NOESY/ROESY spectrum

31 DEPT (Distortionless Enhancement by Polarization Transfer) CH CH 2 CH 3 1/2J

32 220 200 180 160 140 120 100 80 60 40 20 0 a b c d e a b c d e 13 C spectrum DEPT-135(CH + CH 3 - CH 2 ) DEPT- 90 (CH) DEPT- 45 (CH + CH 2 + CH 3 ) DEPT spectra 4-hydroxy-3-methyl-2-butanone 13 C spectrum DEPT- 45 DEPT- 90 (DEPT- 45)-(DEPPT-135) (DEPT- 45)+(DEPT-135)-(DEPT- 90) CH 3 CH 2 CH All protonated Pure subspectra DEPT spectrum and its interpretation

33 I. Assignment of Resonances to Atoms Within a Molecule Assigning 1 H Resonances on the basis of Chemical Shifts Assigning 1 H Resonances on the basis of the COSY spectrum Assigning 13 C Resonances on the basis of Chemical Shifts Pairing 1 H and 13 C Shifts by using the HSQC / HMQC spectrum Assignment of Nonprotonated 13 C’s on the basis of the HMBC spectrum Determining Stereochemistry by using the NOESY / ROESY spectrum

34 II. Elucidation of Unknown Molecular Structures Initial Inspection of the one-dimensional spectra : 1 H and 13 C Establishment of connectivity between protons on the basis of the gCOSY spectrum List the 1 H - 13 C data in tabular form Pairing 1 H and 13 C Shifts by using the HSQC / HMQC spectrum Assignment of Nonprotonated 13 C’s on the basis of the HMBC spectrum Determining Stereochemistry by using the NOESY / ROESY spectrum

35 C 9 H 9 ClO 2 MW=184.62 * Problem 1 and 2 are selected from “Organic Structure Determination Using 2-D NMR Spectroscopy” - J. H. Simpson, 2008 Problem 1 1 H NMR

36 The carbon signal at 157.0 ppm is lost 13 C NMR

37 HMQC

38 1 H COSY

39 NOESY

40 C 7 H 12 O 2 Problem 2 1 H NMR

41 13 C NMR

42 HSQC

43 1 H COSY

44 HMBC

45 10.8 8.06 (d, 7.7) 7.37 (d, 8.0) 7.24 (dd, 8.0, 7.4) 7.04 (dd, 7.7, 7.4) 3.64 2.33 2.26 Problem 3 1 H spectrum

46 142.6139.5138.3136.9127.0123.8122.8121.9118.0 109.6110.2 108.5 60.6 13.412.5 xx x 13 C spectrum

47 HSQC

48 COSY Spectrum 8.06 7.377.247.04

49 HMBC Spectrum

50 Expanded HMBC Spectrum 127.0 108.5 138.3136.9

51 Expanded HMBC Spectrum 139.5 123.8122.8 121.9 118.0 110.2

52 Expanded HMBC Spectrum 109.6 122.8 136.9 139.5

53 문제 풀이

54 C 9 H 9 ClO 2 MW=184.62 Problem 1 1 H NMR Degrees of unsaturation = 9 – 9/2 + 1-1/2 =10 7.22 6.85 4.203.90 3.34 2.90 2.75

55 * The carbon signal at 157.0 ppm is lost 13 C NMR

56 HMQC 129.4115.9 69.0 50.0 44.6 7.22 6.85 4.20 3.90 3.34 2.90 2.75 129.4 - 7.22 115.9 – 6.85 69.0 – 3.90 / 4.20 50.0 – 3.34 44.6 – 2.75 / 2.90

57 1 H COSY X 129.4 - 7.22 115.9 – 6.85 69.0 – 3.90 / 4.20 50.0 – 3.34 44.6 – 2.75 / 2.90 7.22 6.85 3.90 4.20 3.34 2.75 2.90

58 NOESY 7.22 6.85 3.90 4.20 2.75 2.90 3.34 C 9 H 9 ClO 2

59 C 7 H 12 O 2 Problem 2 1 H NMR 6.15 4.90 4.68 3.79 3.50 2.071.86 1.76 1.16 Degrees of unsaturation = 7 – 12/2 + 1 =2

60 13 C NMR

61 HSQC 140.4 101.163.5 26.8 16.3 15.0 96.7 6.15 4.90 4.68 3.79 3.50 2.07 1.86 1.76 1.16 140.4 – 6.15 101.1 – 4.68 96.7 – 4.90 63.5 – 3.50 / 3.79 26.8 – 1.76 (CH 2 ) 16.3 – 1.86 /2.07 15.0 – 1.16 (CH 3 )

62 1 H COSY 6.15 4.90 4.68 3.79 3.50 1.86 1.76 1.16 2.07 140.4 – 6.15 101.1 – 4.68 96.7 – 4.90 63.5 – 3.50 / 3.79 26.8 – 1.76 (CH 2 ) 16.3 – 1.86 / 2.07 15.0 – 1.16 (CH 3 ) 6.154.68 1.86 2.07 1.76 4.90 1.16 3.50 3.79

63 HMBC C 7 H 12 O 2 6.154.68 1.86 2.07 1.76 4.90 1.16 3.50 3.79 140.4 – 6.15 101.1 – 4.68 96.7 – 4.90 63.5 – 3.50 / 3.79 26.8 – 1.76 (CH 2 ) 16.3 – 1.86 / 2.07 15.0 – 1.16 (CH 3 ) Degrees of unsaturation = 2

64 10.8 8.06 (d, 7.7) 7.37 (d, 8.0) 7.24 (dd, 8.0, 7.4) 7.04 (dd, 7.7, 7.4) 3.64 2.33 2.26 Problem 1 H spectrum MW = 241 C 15 H 15 NO 2 Degrees of unsaturation = 15 -15/2 + 1 +1/2 = 9

65 142.6139.5138.3136.9127.0123.8122.8121.9118.0 109.6110.2 108.5 60.6 13.412.5 xx x 13 C spectrum

66 HSQC Spectrum 142.6 139.5 138.3 136.9 127.0 123.8 - 7.24 122.8 121.9 - 8.06 118.0 - 7.04 110.2 - 7.37 109.6 108.5 60.6 - 3.64 (CH 3 ) 13.4 - 2.33 (CH 3 ) 12.5 - 2.26 (CH 3 )

67 COSY Spectrum 8.06 7.377.247.04 8.06 7.04 7.24 7.37

68 HMBC Spectrum

69 Expanded HMBC Spectrum 127.0 108.5 138.3136.9 138.3 108.5 127.0 136.9 142.6 139.5 138.3 136.9 127.0 123.8 - 7.24 122.8 121.9 - 8.06 118.0 - 7.04 110.2 - 7.37 109.6 108.5 60.6 - 3.64 (CH 3 ) 13.4 - 2.33 (CH 3 ) 12.5 - 2.26 (CH 3 )

70 Expanded HMBC Spectrum 8.06 / 121.9 7.04 /118.0 7.24 / 123.8 7.37 / 110.2 139.5 122.8 139.5123.8122.8121.9 118.0 110.2 8.06 7.37 7.24 7.04

71 Expanded HMBC Spectrum 109.6 122.8 136.9139.5 122.8136.9 109.5 NHNH 10.2 C 15 H 15 NO 2 Degrees of unsaturation = 9

72 MW = 241 C 15 H 15 NO 2


Download ppt "How to Analyze of 2D NMR Spectra ( small molecules) 2009. 12. 28 노 정 래."

Similar presentations


Ads by Google