Download presentation
Presentation is loading. Please wait.
Published byCarmella Hodge Modified over 9 years ago
1
How to Analyze of 2D NMR Spectra ( small molecules) 2009. 12. 28 노 정 래
2
Pulse width (pw) FT 1H1H Conventional proton spectrum ( 1 H NMR)
3
1 H and 13 C NMR spectra (Chemical shifts, )
4
Carbon spectrum ( 13 C NMR) FT 1H1H 13 C CHCl 3 (1% ) 13 C 1H1H 1H1H BoBo (Coupled carbon spectrum) coupling J CH
5
Pulse width (pw) 13 C BB 13 C 1H1H Carbon spectrum ( 13 C NMR) (Decoupled carbon spectrum) 1H1H 13 C CHCl 3 (1% )
6
13 CH 3 13 CH 2 13 CH 13 C C C C C H H H H H H Coupled Carbon Decoupled Carbon Nuclear Overhauser Effect (nOe)
7
Proton-Proton coupling constant (J HH ) J HH Not through space, but through bonds
8
- Hybridization of the atoms - Bond lengths - Bond angles and dihedral angles - Substituent effects - The presence of neighboring -bonds J HH [Hz] signJ CH [Hz] signJ CC [Hz] sign 1J1J 125 ~ 250+30 ~ 80+ 2J2J 0 ~ 30-*-10 ~ 20+ / -< 20+ / - 3J3J 0 ~ 18+1 ~ 10+0 ~ 5+ 3+n J 0 ~ 7+ / -< 1+ / -< 1+ / - * Usually negative, but sometimes positive Factors influencing scalar coupling The order of magnitude and sign of scalar couplings
9
2-methylpent-1-en-3-ol Connectivity of protons and carbons
10
Men and their Partner (Direct Coupling)
11
Friendship of Partners (Indirect coupling)
12
Relation between Men and their friend’s partner (remote coupling)
13
Direct Detection New Techniques employed in modern NMR experiments low sensitivity (low natural abundance) long time for multidimensional NMR experiment high sensitivity short time for multidimensional NMR experiment 13 C 1H1H Indirect Detection (Inverse Detection) 13 C 1H1H
14
99%( inactive) 1% (active) 12 C 1H1H 13 C 1H1H labeling (70% 13 C) natural (1% 13 C) H-C-Cl 3 J CH =216 Hz
15
+ = Comparison of spectrum using phase cycling and PFG Phase cycling ( it is necessary to select interested signals with several scans) scan 1 scan 2 sum PFG ( select interested signals or eliminate the unwanted signals with one PFG pulse One scan In case of dense sample - gives spectrum in short time - gives clean spectrum
16
PFG dz Field strength 1H1H x y Bo x y Pulse Field Gradient (PFG)
17
PFG x y x y x y Pulse Field Gradient (PFG)
18
Origin 2D Data t J t2t2 t1t1 t1t1
19
Production of 2D NMR spectrum FT (t 2 ) t2t2 t1t1 FT (t 1 ) t2t2 t1t1
20
1H1H 1H1H F1F1 F2F2 HaHa HbHb HaHa HbHb cross peakdiagonal peaks H a / H b COSY spectrum t1t1 t2t2 128 x 1024 (256 x 1024) 256 x 1024 (512 x 1024) 512 x 1024 (1024 x 2048) 90 COSY spectrum (COrrelation SpectroscopY) C HbHb C HaHa 2 J HH C HbHb HaHa 3 J HH 4 J HH 1 2 3 4 t1t1 t2t2 = 0-30 Hz = 0-18 Hz FT(t 1, t 2 )
21
C C CC C C HaHa HbHb HcHc HdHd HeHe a b c e d a b d c e diagonal peak → cross peak → diagonal peak COSY spectrum and its Interpretation a b d c e H b / H c
22
C C CC C C HaHa HbHb HcHc HdHd HfHf a b c f d a b e c f ( ) diagonal peak → cross peak → diagonal peak HeHe COSY spectrum and its Interpretation e d
23
C C CC C C HaHa HbHb HcHc HdHd HeHe a b/e c f d a d c f ( ) diagonal peak → cross peak → diagonal peak C HfHf Overlapped signals COSY spectrum and its Interpretation b c b d
24
TOCSY (TOtal Correlation SpectroscopY) d b c a acbdacbd t1t1 t2t2 128 x 1024 (256 x 1024) 256 x 1024 (512 x 1024) 512 x 1024 (1024 x 2048) 90 Mixing pulse 60~80ms C C CC HaHa HbHb HcHc HdHd 3 J HH 1 2 3 t1t1 t2t2 4 FT(t 1, t 2 ) TOCSY spectrum
25
C C CC C C HaHa HbHb HcHc HdHd HeHe a b/e c f d a d c f C HfHf d a c f TOCSY spectrum and its Interpretation
26
13 C CaCa CbCb HaHa HbHb 1H1H CaCa CbCb 1H1H HaHa HbHb HMQC (Heteronuclear Multiple Quantum Correlation) / HSQC (Heteronuclear Single Quantum Correlation) t1t1 t2t2 1/2J CH 128 x 1024 (256 x 1024) 256 x 1024 (512 x 1024) Pairing 1 H and 13 C Shifts by using the HSQC / HMQC spectrum = 125-250 Hz 1 J CH 13 C 1H1H CaCa CbCb O 1Ha1Ha 1Hb1Hb 1 3 t1t1 t2t2 4 1 J CH 2 FT(t 1, t 2 ) HSQC spectrum
27
C COCC O H H H H H H H H HMQC/HSQC spectrum and its Interpretation abcd ab c d CH 3, a CH 3, d CH 2, b 13 C 1H1H
28
HMBC (Heteronuclear Multiple Bond Correlation) t1t1 t2t2 128 x 1024 (256 x 1024) 256 x 1024 (512 x 1024) 90180 1/2J CH 1/2 n J CH Assignment of Nonprotonated 13 C’s on the basis of the HMBC spectrum FT(t 1, t 2 ) HMBC spectrum
29
CaCa CbCb OCcCc CdCd OHaHa HaHa HaHa HbHb HdHd HbHb HdHd HdHd a dbc a d b HMBC spectrum and its Interpretation 1H1H 13 C
30
diagonal peak → cross peak → diagonal peak NOESY/ROESY( Nuclear Overhauser Effect Spectroscopy) t1t1 t2t2 90 t1t1 t2t2 Mixing pulse 350 ms Mixing pulse 200 ms Determining Stereochemistry by using the NOESY / ROESY spectrum C C C HaHa HbHb HcHc NOE t1t1 t2t2 a b c 2 J HH NOE / COSY NOE NOESY ROESY FT(t 1, t 2 ) NOESY/ROESY spectrum
31
DEPT (Distortionless Enhancement by Polarization Transfer) CH CH 2 CH 3 1/2J
32
220 200 180 160 140 120 100 80 60 40 20 0 a b c d e a b c d e 13 C spectrum DEPT-135(CH + CH 3 - CH 2 ) DEPT- 90 (CH) DEPT- 45 (CH + CH 2 + CH 3 ) DEPT spectra 4-hydroxy-3-methyl-2-butanone 13 C spectrum DEPT- 45 DEPT- 90 (DEPT- 45)-(DEPPT-135) (DEPT- 45)+(DEPT-135)-(DEPT- 90) CH 3 CH 2 CH All protonated Pure subspectra DEPT spectrum and its interpretation
33
I. Assignment of Resonances to Atoms Within a Molecule Assigning 1 H Resonances on the basis of Chemical Shifts Assigning 1 H Resonances on the basis of the COSY spectrum Assigning 13 C Resonances on the basis of Chemical Shifts Pairing 1 H and 13 C Shifts by using the HSQC / HMQC spectrum Assignment of Nonprotonated 13 C’s on the basis of the HMBC spectrum Determining Stereochemistry by using the NOESY / ROESY spectrum
34
II. Elucidation of Unknown Molecular Structures Initial Inspection of the one-dimensional spectra : 1 H and 13 C Establishment of connectivity between protons on the basis of the gCOSY spectrum List the 1 H - 13 C data in tabular form Pairing 1 H and 13 C Shifts by using the HSQC / HMQC spectrum Assignment of Nonprotonated 13 C’s on the basis of the HMBC spectrum Determining Stereochemistry by using the NOESY / ROESY spectrum
35
C 9 H 9 ClO 2 MW=184.62 * Problem 1 and 2 are selected from “Organic Structure Determination Using 2-D NMR Spectroscopy” - J. H. Simpson, 2008 Problem 1 1 H NMR
36
The carbon signal at 157.0 ppm is lost 13 C NMR
37
HMQC
38
1 H COSY
39
NOESY
40
C 7 H 12 O 2 Problem 2 1 H NMR
41
13 C NMR
42
HSQC
43
1 H COSY
44
HMBC
45
10.8 8.06 (d, 7.7) 7.37 (d, 8.0) 7.24 (dd, 8.0, 7.4) 7.04 (dd, 7.7, 7.4) 3.64 2.33 2.26 Problem 3 1 H spectrum
46
142.6139.5138.3136.9127.0123.8122.8121.9118.0 109.6110.2 108.5 60.6 13.412.5 xx x 13 C spectrum
47
HSQC
48
COSY Spectrum 8.06 7.377.247.04
49
HMBC Spectrum
50
Expanded HMBC Spectrum 127.0 108.5 138.3136.9
51
Expanded HMBC Spectrum 139.5 123.8122.8 121.9 118.0 110.2
52
Expanded HMBC Spectrum 109.6 122.8 136.9 139.5
53
문제 풀이
54
C 9 H 9 ClO 2 MW=184.62 Problem 1 1 H NMR Degrees of unsaturation = 9 – 9/2 + 1-1/2 =10 7.22 6.85 4.203.90 3.34 2.90 2.75
55
* The carbon signal at 157.0 ppm is lost 13 C NMR
56
HMQC 129.4115.9 69.0 50.0 44.6 7.22 6.85 4.20 3.90 3.34 2.90 2.75 129.4 - 7.22 115.9 – 6.85 69.0 – 3.90 / 4.20 50.0 – 3.34 44.6 – 2.75 / 2.90
57
1 H COSY X 129.4 - 7.22 115.9 – 6.85 69.0 – 3.90 / 4.20 50.0 – 3.34 44.6 – 2.75 / 2.90 7.22 6.85 3.90 4.20 3.34 2.75 2.90
58
NOESY 7.22 6.85 3.90 4.20 2.75 2.90 3.34 C 9 H 9 ClO 2
59
C 7 H 12 O 2 Problem 2 1 H NMR 6.15 4.90 4.68 3.79 3.50 2.071.86 1.76 1.16 Degrees of unsaturation = 7 – 12/2 + 1 =2
60
13 C NMR
61
HSQC 140.4 101.163.5 26.8 16.3 15.0 96.7 6.15 4.90 4.68 3.79 3.50 2.07 1.86 1.76 1.16 140.4 – 6.15 101.1 – 4.68 96.7 – 4.90 63.5 – 3.50 / 3.79 26.8 – 1.76 (CH 2 ) 16.3 – 1.86 /2.07 15.0 – 1.16 (CH 3 )
62
1 H COSY 6.15 4.90 4.68 3.79 3.50 1.86 1.76 1.16 2.07 140.4 – 6.15 101.1 – 4.68 96.7 – 4.90 63.5 – 3.50 / 3.79 26.8 – 1.76 (CH 2 ) 16.3 – 1.86 / 2.07 15.0 – 1.16 (CH 3 ) 6.154.68 1.86 2.07 1.76 4.90 1.16 3.50 3.79
63
HMBC C 7 H 12 O 2 6.154.68 1.86 2.07 1.76 4.90 1.16 3.50 3.79 140.4 – 6.15 101.1 – 4.68 96.7 – 4.90 63.5 – 3.50 / 3.79 26.8 – 1.76 (CH 2 ) 16.3 – 1.86 / 2.07 15.0 – 1.16 (CH 3 ) Degrees of unsaturation = 2
64
10.8 8.06 (d, 7.7) 7.37 (d, 8.0) 7.24 (dd, 8.0, 7.4) 7.04 (dd, 7.7, 7.4) 3.64 2.33 2.26 Problem 1 H spectrum MW = 241 C 15 H 15 NO 2 Degrees of unsaturation = 15 -15/2 + 1 +1/2 = 9
65
142.6139.5138.3136.9127.0123.8122.8121.9118.0 109.6110.2 108.5 60.6 13.412.5 xx x 13 C spectrum
66
HSQC Spectrum 142.6 139.5 138.3 136.9 127.0 123.8 - 7.24 122.8 121.9 - 8.06 118.0 - 7.04 110.2 - 7.37 109.6 108.5 60.6 - 3.64 (CH 3 ) 13.4 - 2.33 (CH 3 ) 12.5 - 2.26 (CH 3 )
67
COSY Spectrum 8.06 7.377.247.04 8.06 7.04 7.24 7.37
68
HMBC Spectrum
69
Expanded HMBC Spectrum 127.0 108.5 138.3136.9 138.3 108.5 127.0 136.9 142.6 139.5 138.3 136.9 127.0 123.8 - 7.24 122.8 121.9 - 8.06 118.0 - 7.04 110.2 - 7.37 109.6 108.5 60.6 - 3.64 (CH 3 ) 13.4 - 2.33 (CH 3 ) 12.5 - 2.26 (CH 3 )
70
Expanded HMBC Spectrum 8.06 / 121.9 7.04 /118.0 7.24 / 123.8 7.37 / 110.2 139.5 122.8 139.5123.8122.8121.9 118.0 110.2 8.06 7.37 7.24 7.04
71
Expanded HMBC Spectrum 109.6 122.8 136.9139.5 122.8136.9 109.5 NHNH 10.2 C 15 H 15 NO 2 Degrees of unsaturation = 9
72
MW = 241 C 15 H 15 NO 2
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.