Download presentation
Presentation is loading. Please wait.
Published byNoel Armstrong Modified over 9 years ago
1
Experimental Characterization of Frequency Dependent Squeezed Light R. Schnabel, S. Chelkowski, H. Vahlbruch, B. Hage, A. Franzen, N. Lastzka, and K. Danzmann. LIGO-G050052-00-Z Institut für Atom- und Molekülphysik, Universität Hannover Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),
2
Roman Schnabel 2 Noise reduction by squeezed light, (- 6 dB in variance) Simple MI plus Squeezed Light Input Standard quantum limit (SQL) Quantum noise in phase quadrature
3
Roman Schnabel 3 1064 nm Mirror masses: m=5.6 kg Effective length: L=1200 m SR Power reflectivity: r=0.99 Detuning: =0.0055 rad 10 kW Faraday Rotator Frequency dependent squeezed states Signal-recycling mirror Power- Recycling mirror Laser Photo diode Optical Spring SR Interferometer
4
Roman Schnabel 4 Optical Spring SR Interferometers Quantum noise of GEO 600 (design values) in two given quadratures: SQL Phase Amplitude - 6 dB [J. Harms et al., PRD (2003)]
5
Roman Schnabel 5 Reflecting squeezed light at two subsequent filter cavities provide the desired frequency dependence in the generic case (for fixed angle homodyne detection). [Kimble et al., Phys. Rev. D 65, 022002 (2001)], [Harms et al., Phys. Rev. D 68, 042001 (2003)]. Frequency Dependent Squeezed Light Faraday rotator Photo diode SHG OPA Filter cavities SR mirror
6
Roman Schnabel 6 SQL Frequency Dependent Squeezing of Shot-noise Thermal noise (Internal) Amplitude q., GEO 600 (expected) Opto- mechanical resonance Optical resonance squeezed vacuum
7
Roman Schnabel 7 Phase squeezing Squeezing at 45° Phase squeezing Amplitude squeezing Phase squeezing Squeezing at 45° Squeezing at -45° Amplitude squeezing Phase squeezing Squeezing at 45° Frequency dependent squeezing Frequency Dependent Squeezing of Shot-noise
8
Roman Schnabel 8 Rotation of Quadrature Amplitudes Amplitude quadrature Phase quadrature quadrature Angle rotated by
9
Roman Schnabel 9 Generation of Frequency Dependent SQZ
10
Roman Schnabel 10 Squeezed Light Generation
11
Roman Schnabel 11 OPA layout MgO LiNO – hemilithic crystal 7.5mm x 5mm x 2.5 mm Radius of curvature: 10 mm HR=99.97% at 1064 nm Flat surface AR at 1064 nm and 532 nm Output coupler: R=94 % at 1064 nm Finesse ~ 100 Waist ~ 32 m FSR ~ 9 GHz = 90 MHz A. Franzen Squeezed Light Generation
12
Roman Schnabel 12 Locked Amplitude Squeezed Spectrum Squeezed noise (-2 dB)
13
Roman Schnabel 13 Frequency Dependent Squeezing Spectrum
14
Roman Schnabel 14 Frequency Dependent Squeezing Spectrum
15
Roman Schnabel 15 Frequency Dependent Squeezing Spectrum
16
Roman Schnabel 16 Tomography - Quadrature Noise Histogram Mixer Voltage [mV] Time [s] counts / bin Projected Wigner function
17
Roman Schnabel 17 Tomography - Wigner Function Plots 14.1 MHz 12.0 MHz
18
Roman Schnabel 18 Tomography - Wigner Function Plots [Chelkowski et al., Phys. Rev. A 71, 013806 (2005)]. 14.1 MHz
19
Roman Schnabel 19 Cancellation of Frequency Dependence Rotation from positive detuning (+15.15MHz) Rotation from negative detuning -15.15MHz
20
Roman Schnabel 20 Summary Demonstration of frequency dependent squeezed light in a fully controlled (locked) setup Characterization using quantum state tomography (also locked) Cooperation of two identical cavities with opposite detunings (filter cavity plus signal recycling cavity) has been inferred leading to a broadband noise reduction. [Chelkowski et al., Phys. Rev. A 71, 013806 (2005)].
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.