Download presentation
Presentation is loading. Please wait.
Published byBerniece Cummings Modified over 9 years ago
1
A dvances in Automated Language Classification ASJP Consortium Dik Bakker, Lancaster
2
ASJP: Automatic Reconstruction2 Overview Project: ASJP (Automated Similarity Judgment Program)
3
ASJP: Automatic Reconstruction3 Overview Project: ASJP are: Sören Wichmann (BRD; Netherlands) Viveka Velupillai (BRD) André Müller (BRD) Robert Mailhammer (BRD) Hagen Jung (BRD) Eric Holman (US) Anthony Grant (UK) Dmitry Egorov (Russia) Pamela Brown (US) Cecil Brown (US) Dik Bakker (UK; Netherlands)
4
ASJP: Automatic Reconstruction4 Overview Project: ASJP (Automated Similarity Judgment Program)
5
ASJP: Automatic Reconstruction5 Overview Project: ASJP (Automated Similarity Judgment Program) Overall goal: Automatic reconstruction of language relationships
6
ASJP: Automatic Reconstruction6 Overview Project: ASJP (Automated Similarity Judgment Program) Overall goal: Automatic reconstruction of language relationships Basis: Distance matrix between individual languages on basis of linguistic features
7
ASJP: Automatic Reconstruction7 Overview Project: ASJP (Automated Similarity Judgment Program) Overall goal: Automatic reconstruction of language relationships Basis: Distance matrix between individual languages on basis of linguistic features Method: Lexicostatistics: mass comparison of lexical items
8
ASJP: Automatic Reconstruction8 Overview MAIN GOAL: Reconstruction of Language Relationships Derived goals (a.o):
9
ASJP: Automatic Reconstruction9 Overview MAIN GOAL: Reconstruction of Language Relationships Derived goals: - Critical assessment and refinement of existing classifications
10
ASJP: Automatic Reconstruction10 Overview MAIN GOAL: Reconstruction of Language Relationships Derived goals: - Critical assessment and refinement of existing classifications - Classify newly described and unclassified languages
11
ASJP: Automatic Reconstruction11 Overview MAIN GOAL: Reconstruction of Language Relationships Derived goals: - Critical assessment and refinement of existing classifications - Classify newly described and unclassified languages - Estimate time depths between languages / genera / families
12
ASJP: Automatic Reconstruction12 Overview MAIN GOAL: Reconstruction of Language Relationships Derived goals: - Critical assessment and refinement of existing classifications - Classify newly described and unclassified languages - Estimate time depths between languages / genera / families - Search for (ir)regularities in phylogenies
13
ASJP: Automatic Reconstruction13 Overview MAIN GOAL: Reconstruction of Language Relationships Derived goals: - Critical assessment and refinement of existing classifications - Classify newly described and unclassified languages - Estimate time depths between languages / genera / families - Search for (ir)regularities in phylogenies - Test hypotheses (e.g. Atkinson et al 2008; ‘elbow’ phenomenon)
14
ASJP: Automatic Reconstruction14 Overview MAIN GOAL: Reconstruction of Language Relationships Derived goals: - Critical assessment and refinement of existing classifications - Classify newly described and unclassified languages - Estimate time depths between languages / genera / families - Search for (ir)regularities in phylogenies - Test hypotheses (e.g. Atkinson et al 2008; ‘elbow’ phenomenon) - Experimentally find the best/optimal dating method
15
ASJP: Automatic Reconstruction15 Overview MAIN GOAL: Reconstruction of Language Relationships Derived goals: - Critical assessment and refinement of existing classifications - Classify newly described and unclassified languages - Estimate time depths between languages / genera / families - Search for (ir)regularities in phylogenies - Test hypotheses (e.g. Atkinson et al 2008; ‘elbow’ phenomenon) - Experimentally find the best/optimal dating method - Detect borrowings
16
ASJP: Automatic Reconstruction16 Overview MAIN GOAL: Reconstruction of Language Relationships Derived goals: - Critical assessment and refinement of existing classifications - Classify newly described and unclassified languages - Estimate time depths between languages / genera / families - Search for (ir)regularities in phylogenies - Test hypotheses (e.g. Atkinson et al 2008; ‘elbow’ phenomenon) - Experimentally find the best/optimal dating method - Detect borrowings
17
ASJP: Automatic Reconstruction17 Overview 1. The basic list of lexical items
18
ASJP: Automatic Reconstruction18 Overview 1. The basic list of lexical items 2. Comparing languages
19
ASJP: Automatic Reconstruction19 Overview 1. The basic list of lexical items 2. Comparing languages 3. Some results: genetic and areal proximity
20
ASJP: Automatic Reconstruction20 Overview 1. The basic list of lexical items 2. Comparing languages 3. Some results: genetic and areal proximity 4. On Inheritance vs Borrowing
21
ASJP: Automatic Reconstruction21 Overview 1. The basic list of lexical items 2. Comparing languages 3. Some results: genetic and areal proximity 4. On Inheritance vs Borrowing 5. Conclusions
22
ASJP: Automatic Reconstruction22 1. The basic list of lexical items
23
ASJP: Automatic Reconstruction23 Lexical items Word list: Swadesh 100 basic meanings
24
ASJP: Automatic Reconstruction24 Lexical items Word list: Swadesh 100 basic meanings - Word coined in most languages
25
ASJP: Automatic Reconstruction25 Lexical items Word list: Swadesh 100 basic meanings - Word coined in most languages - Collected in field work lexicon / grammar
26
ASJP: Automatic Reconstruction26 Lexical items Word list: Swadesh 100 basic meanings - Word coined in most languages - Collected in field work lexicon / grammar - Inherited rather than borrowed
27
ASJP: Automatic Reconstruction27 Lexical items Word list: Swadesh 100 basic meanings - Word coined in most languages - Collected in field work lexicon / grammar - Inherited rather than borrowed - Culturally independent
28
ASJP: Automatic Reconstruction28 Lexical items Word list: Swadesh 100 basic meanings - Word coined in most languages - Collected in field work lexicon / grammar - Inherited rather than borrowed - Culturally independent - Stable over time
29
ASJP: Automatic Reconstruction29 Lexical items Word list: Swadesh 100 basic meanings - Word coined in most languages - Collected in field work lexicon / grammar - Inherited rather than borrowed - Culturally independent - Stable over time - Few synonyms
30
ASJP: Automatic Reconstruction30 1. I21. dog41. nose61. die81. smoke 2. you22. louse42. mouth62. kill82. fire 3. we23. tree43. tooth63. swim83. ash 4. this24. seed44. tongue64. fly84. burn 5. that25. leaf45. claw65. walk85. path 6. who26. root46. foot66. come86. mountain 7. what27. bark47. knee67. lie87. red 8. not28. skin48. hand68. sit88. green 9. all29. flesh49. belly69. stand89. yellow 10. many30. blood50. neck70. give90. white 11. one31. bone51. breasts71. say91. black 12. two32. grease52. heart72. sun92. night 13. big33. egg53. liver73. moon93. hot 14. long34. horn54. drink74. star94. cold 15. small35. tail55. eat75. water95. full 16. woman36. feather56. bite76. rain96. new 17. man37. hair57. see77. stone97. good 18. person38. head58. hear78. sand98. round 19. fish39. ear59. know79. earth99. dry 20. bird40. eye60. sleep80. cloud100. name
31
ASJP: Automatic Reconstruction31 1. I21. dog41. nose61. die81. smoke 2. you22. louse42. mouth62. kill82. fire 3. we23. tree43. tooth63. swim83. ash 4. this24. seed44. tongue64. fly84. burn 5. that25. leaf45. claw65. walk85. path 6. who26. root46. foot66. come86. mountain 7. what27. bark47. knee67. lie87. red 8. not28. skin48. hand68. sit88. green 9. all29. flesh49. belly69. stand89. yellow 10. many30. blood50. neck70. give90. white 11. one31. bone51. breasts71. say91. black 12. two32. grease52. heart72. sun92. night 13. big33. egg53. liver73. moon93. hot 14. long34. horn54. drink74. star94. cold 15. small35. tail55. eat75. water95. full 16. woman36. feather56. bite76. rain96. new 17. man37. hair57. see77. stone97. good 18. person38. head58. hear78. sand98. round 19. fish39. ear59. know79. earth99. dry 20. bird40. eye60. sleep80. cloud100. name
32
ASJP: Automatic Reconstruction32 1. I21. dog41. nose61. die81. smoke 2. you22. louse42. mouth62. kill82. fire 3. we23. tree43. tooth63. swim83. ash 4. this24. seed44. tongue64. fly84. burn 5. that25. leaf45. claw65. walk85. path 6. who26. root46. foot66. come86. mountain 7. what27. bark47. knee67. lie87. red 8. not28. skin48. hand68. sit88. green 9. all29. flesh49. belly69. stand89. yellow 10. many30. blood50. neck70. give90. white 11. one31. bone51. breasts71. say91. black 12. two32. grease52. heart72. sun92. night 13. big33. egg53. liver73. moon93. hot 14. long34. horn54. drink74. star94. cold 15. small35. tail55. eat75. water95. full 16. woman36. feather56. bite76. rain96. new 17. man37. hair57. see77. stone97. good 18. person38. head58. hear78. sand98. round 19. fish39. ear59. know79. earth99. dry 20. bird40. eye60. sleep80. cloud100. name
33
ASJP: Automatic Reconstruction33 1. I21. dog41. nose61. die81. smoke 2. you22. louse42. mouth62. kill82. fire 3. we23. tree43. tooth63. swim83. ash 4. this24. seed44. tongue64. fly84. burn 5. that25. leaf45. claw65. walk85. path 6. who26. root46. foot66. come86. mountain 7. what27. bark47. knee67. lie87. red 8. not28. skin48. hand68. sit88. green 9. all29. flesh49. belly69. stand89. yellow 10. many30. blood50. neck70. give90. white 11. one31. bone51. breasts71. say91. black 12. two32. grease52. heart72. sun92. night 13. big33. egg53. liver73. moon93. hot 14. long34. horn54. drink74. star94. cold 15. small35. tail55. eat75. water95. full 16. woman36. feather56. bite76. rain96. new 17. man37. hair57. see77. stone97. good 18. person38. head58. hear78. sand98. round 19. fish39. ear59. know79. earth99. dry 20. bird40. eye60. sleep80. cloud100. name
34
ASJP: Automatic Reconstruction34 1. I21. dog41. nose61. die81. smoke 2. you22. louse42. mouth62. kill82. fire 3. we23. tree43. tooth63. swim83. ash 4. this24. seed44. tongue64. fly84. burn 5. that25. leaf45. claw65. walk85. path 6. who26. root46. foot66. come86. mountain 7. what27. bark47. knee67. lie87. red 8. not28. skin48. hand68. sit88. green 9. all29. flesh49. belly69. stand89. yellow 10. many30. blood50. neck70. give90. white 11. one31. bone51. breasts71. say91. black 12. two32. grease52. heart72. sun92. night 13. big33. egg53. liver73. moon93. hot 14. long34. horn54. drink74. star94. cold 15. small35. tail55. eat75. water95. full 16. woman36. feather56. bite76. rain96. new 17. man37. hair57. see77. stone97. good 18. person38. head58. hear78. sand98. round 19. fish39. ear59. know79. earth99. dry 20. bird40. eye60. sleep80. cloud100. name
35
ASJP: Automatic Reconstruction35 1. I21. dog41. nose61. die81. smoke 2. you22. louse42. mouth62. kill82. fire 3. we23. tree43. tooth63. swim83. ash 4. this24. seed44. tongue64. fly84. burn 5. that25. leaf45. claw65. walk85. path 6. who26. root46. foot66. come86. mountain 7. what27. bark47. knee67. lie87. red 8. not28. skin48. hand68. sit88. green 9. all29. flesh49. belly69. stand89. yellow 10. many30. blood50. neck70. give90. white 11. one31. bone51. breasts71. say91. black 12. two32. grease52. heart72. sun92. night 13. big33. egg53. liver73. moon93. hot 14. long34. horn54. drink74. star94. cold 15. small35. tail55. eat75. water95. full 16. woman36. feather56. bite76. rain96. new 17. man37. hair57. see77. stone97. good 18. person38. head58. hear78. sand98. round 19. fish39. ear59. know79. earth99. dry 20. bird40. eye60. sleep80. cloud100. name
36
ASJP: Automatic Reconstruction36 1. I21. dog41. nose61. die81. smoke 2. you22. louse42. mouth62. kill82. fire 3. we23. tree43. tooth63. swim83. ash 4. this24. seed44. tongue64. fly84. burn 5. that25. leaf45. claw65. walk85. path 6. who26. root46. foot66. come86. mountain 7. what27. bark47. knee67. lie87. red 8. not28. skin48. hand68. sit88. green 9. all29. flesh49. belly69. stand89. yellow 10. many30. blood50. neck70. give90. white 11. one31. bone51. breasts71. say91. black 12. two32. grease52. heart72. sun92. night 13. big33. egg53. liver73. moon93. hot 14. long34. horn54. drink74. star94. cold 15. small35. tail55. eat75. water95. full 16. woman36. feather56. bite76. rain96. new 17. man37. hair57. see77. stone97. good 18. person38. head58. hear78. sand98. round 19. fish39. ear59. know79. earth99. dry 20. bird40. eye60. sleep80. cloud100. name
37
ASJP: Automatic Reconstruction37 Lexical items: further reduction Early analyses have shown: - Optimal 40/100 item subset gives same results
38
ASJP: Automatic Reconstruction38 Lexical items: further reduction Early analyses have shown: - Optimal 40/100 item subset gives same results Less work
39
ASJP: Automatic Reconstruction39 Lexical items: further reduction Early analyses have shown: - Optimal 40/100 item subset gives same results Less work Less missing data
40
ASJP: Automatic Reconstruction40 Lexical items: further reduction Early analyses have shown: - Optimal 40/100 item subset gives same results Less work Less missing data Faster processing; combinatorial explosion: 40 : 100 ~ 3 * 10 7 : 2 * 10 10
41
ASJP: Automatic Reconstruction41 Lexical items: stability Most stable items:
42
ASJP: Automatic Reconstruction42 Lexical items: stability Most stable items: Iteratively throw out the most unstable item in terms of variation within genera (3500-4000 years; Dryer 2001; 2005) E.g. Germanic, Romance, Slavic, …
43
ASJP: Automatic Reconstruction43 Lexical items: stability Most stable items: Iteratively throw out the most unstable item in terms of variation within genera (3500-4000 years; Dryer 2001; 2005) E.g. Germanic, Romance, Slavic, … Formula: S = (E - U)/(100 - U) (weighted average % matches Eq vs Uneq)
44
ASJP: Automatic Reconstruction44 Ethnologue (Goodmann-Kruskal) WALS (Pearson) ++ --
45
ASJP: Automatic Reconstruction45 I dog nose die smoke you louse mouth kill fire we tree tooth swim ash this seed tongue fly burn that leaf claw walk path who root foot come mountain what bark knee lie red not skin hand sit green all flesh belly stand yellow many blood neck give white one bone breasts say black two grease heart sun night big egg liver moon hot long horn drink star cold small tail eat water full woman feather bite rain new man hair see stone good person head hear sand round fish ear know earth dry bird eye sleep cloud name
46
ASJP: Automatic Reconstruction46 I dog nose die smoke you louse mouth kill fire we tree tooth swim ash this seed tongue fly burn that leaf claw walk path who root foot come mountain what bark knee lie red not skin hand sit green all flesh belly stand yellow many blood neck give white one bone breast say black two grease heart sun night big egg liver moon hot long horn drink star cold small tail eat water full woman feather bite rain new man hair see stone good person head hear sand round fish ear know earth dry bird eye sleep cloud name 40 Most Stable
47
ASJP: Automatic Reconstruction47 I dog nose die smoke you louse mouth kill fire we tree tooth swim ash this seed tongue fly burn that leaf claw walk path who root foot come mountain what bark knee lie red not skin hand sit green all flesh belly stand yellow many blood neck give white one bone breast say black two grease heart sun night big egg liver moon hot long horn drink star cold small tail eat water full woman feather bite rain new man hair see stone good person head hear sand round fish ear know earth dry bird eye sleep cloud name HomophonesHomophones
48
ASJP: Automatic Reconstruction48 Lexical items: transcription First phase of project (2007): Problems with full IPA representation of words:
49
ASJP: Automatic Reconstruction49 Lexical items: transcription First phase of project (2007): Problems with full IPA representation of words: - data entry via keyboard
50
ASJP: Automatic Reconstruction50 Lexical items: transcription First phase of project (2007): Problems with full IPA representation of words: - data entry via keyboard - simple programming language (Fortran; Pascal)
51
ASJP: Automatic Reconstruction51 Lexical items: transcription First phase of project (2007): Problems with full IPA representation of words: - data entry via keyboard - simple programming language (Fortran; Pascal) Recoding to simplified ASJPcode (only Ascii)
52
ASJP: Automatic Reconstruction52 Lexical items: transcription ASJPcode:
53
ASJP: Automatic Reconstruction53 Lexical items: transcription ASJPcode: 7 Vowels
54
ASJP: Automatic Reconstruction54 Lexical items: transcription ASJPcode: 7 Vowels 34 Consonants
55
ASJP: Automatic Reconstruction55 Lexical items: transcription ASJPcode: 7 Vowels 34 Consonants Operators for:Nasalization Labialization Palatalization Aspiration Glottalization
56
ASJP: Automatic Reconstruction56 Lexical items: transcription ASJPcode: 7 Vowels 34 Consonants Operators for:Nasalization Labialization Palatalization Aspiration Glottalization (some) complex syllables simplified (VXC VC)
57
ASJP: Automatic Reconstruction57 Abaza (Caucasian): Meaning PERSON LEAF SKIN HORN NOSE TOOTH
58
ASJP: Automatic Reconstruction58 Abaza (Caucasian): MeaningIPA PERSONʕʷɨʧʼʲʷʕʷɨs LEAFbɣʲɨ SKINʧʷazʲ HORNʧʼʷɨʕʷa NOSEpɨnʦʼa TOOTHpɨʦ
59
ASJP: Automatic Reconstruction59 Abaza (Caucasian): MeaningIPAASJPcode PERSONʕʷɨʧʼʲʷʕʷɨsXw~3Cw"yXw~3s LEAFbɣʲɨbxy~3 SKINʧʷazʲCw~azy~ HORNʧʼʷɨʕʷaCw"~3Xw~a NOSEpɨnʦʼap3nc"a TOOTHpɨʦp3c
60
ASJP: Automatic Reconstruction60 Lexical items Collected to date: - Over 2100 languages, dialects and proto
61
ASJP: Automatic Reconstruction61 Lexical items Collected to date: - Over 2100 languages, dialects and proto - Mean number of items/language: 36.2 (/40)
62
ASJP: Automatic Reconstruction62 Lexical items Distribution: Americas:27% Eurasia:23% Australia/PNG:18% Austronesia:15% Africa:14% Creoles: 2% Artificial: 1%
63
ASJP: Automatic Reconstruction63 Languages currently sampled
64
ASJP: Automatic Reconstruction64 Lexical items: transcription Second phase of project (2008): Problems with full IPA representation solved:
65
ASJP: Automatic Reconstruction65 Lexical items: transcription Second phase of project (2008): Problems with full IPA representation solved: 1. automatic conversion IPA to integer (Python)
66
ASJP: Automatic Reconstruction66 Lexical items: transcription Second phase of project (2008): Problems with full IPA representation solved: 1. automatic conversion IPA to integer (Python) 2. (semi-)automatic recoding to ASJPcode: transduction on the basis of a formal grammar
67
ASJP: Automatic Reconstruction67 Lexical items: transcription Abaza (Caucasian): Meaning:PERSON
68
ASJP: Automatic Reconstruction68 Lexical items: transcription Abaza (Caucasian): Meaning:PERSON IPA:ʕʷɨʧʼʲʷʕʷɨs
69
ASJP: Automatic Reconstruction69 Lexical items: transcription Abaza (Caucasian): Meaning:PERSON IPA:ʕʷɨʧʼʲʷʕʷɨs Decimal: 661 695 616 679 700 690 695 661 695 616 115
70
ASJP: Automatic Reconstruction70 Lexical items: transcription Abaza (Caucasian): Meaning:PERSON IPA:ʕʷɨʧʼʲʷʕʷɨs Decimal: 661 695 616 679 700 690 695 661 695 616 115 ASJPcode: 88 119 126 51 67 34 121 119 126 88 119 126 51 115 ( = Xw~3Cw"y ~ Xw~3s)
71
ASJP: Automatic Reconstruction71 Lexical items: transcription Second phase of project (2008): 1. automatic conversion IPA to integer (Python) 2. (semi-)automatic recoding to ASJPcode: transduction on the basis of a formal grammar Why not run on full IPA??
72
ASJP: Automatic Reconstruction72 Lexical items: transcription Second phase of project (2008): 1. automatic conversion IPA to integer (Python) 2. (semi-)automatic recoding to ASJPcode: transduction on the basis of a formal grammar - correlations IPA ~ ASJP > 0.9
73
ASJP: Automatic Reconstruction73 Lexical items: transcription Second phase of project (2008): 1. automatic conversion IPA to integer (Python) 2. (semi-)automatic recoding to ASJPcode: transduction on the basis of a formal grammar - correlations IPA ~ ASJP > 0.9 - but: ASJP better fit with classifications IPA too specific
74
ASJP: Automatic Reconstruction74 Lexical items: transcription IPA:ʕʷɨʧʼʲʷʕʷɨs Decimal: 661 695 616 679 700 690 695 661 695 616 115 ASJP ++ code:( = any unicode string ) A n661, n695, n616, … … P Q A B C … Z P Q Z formal grammar
75
ASJP: Automatic Reconstruction75 Lexical items: transcription IPA:ʕʷɨʧʼʲʷʕʷɨs Decimal: 661 695 616 679 700 690 695 661 695 616 115 ASJP ++ code:( = any unicode string ) A n661, n695, n616, … … P Q A B C … Z P Q Z optimal level of abstraction for historical phonological reconstruction?
76
ASJP: Automatic Reconstruction76 2. Comparing languages
77
ASJP: Automatic Reconstruction77 Comparing words LGIYOUWE ABAZAsErEw3rESw~ErE ABKHAZs3w3Sw~3 AGULzunwuncw~un
78
ASJP: Automatic Reconstruction78 Comparing words LGIYOUWE ABAZAsErEbErESw~ErE ABKHAZs3w3Sw~3 AGULzunwuncw~un LD i =3
79
ASJP: Automatic Reconstruction79 Comparing words LGIYOUWE ABAZAsErEbErESw~ErE ABKHAZs3w3Sw~3 AGULzunwuncw~un LD i =3LD j =4
80
ASJP: Automatic Reconstruction80 Comparing words LGIYOUWE ABAZAsErEbErESw~ErE ABKHAZs3w3Sw~3 AGULzunwuncw~un LD i =3LD j =4 LD k =3
81
ASJP: Automatic Reconstruction81 Comparing words LGIYOUWE ABAZAsErEbErESw~ErE ABKHAZs3w3Sw~3 AGULzunwuncw~un LD i =3LD j =4 LD k =3 …
82
ASJP: Automatic Reconstruction82 Comparing words LGIYOUWE ABAZAsErEbErESw~ErE ABKHAZs3w3Sw~3 AGULzunwuncw~un LD i =3LD j =4LD k =3LD mean =3.73 …
83
ASJP: Automatic Reconstruction83 Comparing words LGIYOUWE ABAZAsErEbErESw~ErE ABKHAZs3w3Sw~3 AGULzunwuncw~un LD i =4LD j =4LD k =4LD mean =4.37 …
84
ASJP: Automatic Reconstruction84 Comparing words LGIYOUWE ABAZAsErEw3rESw~ErE ABKHAZs3w3Sw~3 AGULzunwuncw~un 3.73
85
ASJP: Automatic Reconstruction85 Comparing words LGIYOUWE ABAZAsErEw3rESw~ErE ABKHAZs3w3Sw~3 AGULzunwuncw~un 3.73 4.37
86
ASJP: Automatic Reconstruction86 Comparing words Levenshtein Distance
87
ASJP: Automatic Reconstruction87 Comparing words Levenshtein Distance a. between 2 words: Number of transformations to get from the shorter form to the longer one (changes, additions)
88
ASJP: Automatic Reconstruction88 Comparing words Levenshtein Distance a. between 2 words: Number of transformations to get from the shorter form to the longer one (changes, additions) b. Between 2 languages: E.g. mean LD for overlapping set (<= 40)
89
ASJP: Automatic Reconstruction89 Comparing words Levenshtein Distance Two problems with simple LD:
90
ASJP: Automatic Reconstruction90 Comparing words Levenshtein Distance Two problems: 1.Value depends on length of longest word
91
ASJP: Automatic Reconstruction91 Comparing words Levenshtein Distance Two problems: 1.Value depends on length of longest word Normalize: LDN = ( LD / L max )
92
ASJP: Automatic Reconstruction92 Comparing words Levenshtein Distance Two problems: 1.Value depends on length of longest word Normalize: LDN = ( LD / L max ) 2. Differences between lgs in phonological overlap
93
ASJP: Automatic Reconstruction93 Comparing words Levenshtein Distance Two problems: 1.Value depends on length of longest word Normalize: LDN = ( LD / L max ) 2. Differences between lgs in phonological overlap Eliminate ‘noise’: LDND = ( LDN / LDN different )
94
ASJP: Automatic Reconstruction94 Comparing words Levenshtein Distance Two problems: 1.Value depends on length of longest word Normalize: LDN = 100 * LDN 2. Differences between lgs in phonological overlap Eliminate ‘noise’: LDND = 100 * LDND
95
ASJP: Automatic Reconstruction95 Comparing languages Levenshtein Distance for Language Pair -Mean of all LDND’s of words in common
96
ASJP: Automatic Reconstruction96 Comparing languages Levenshtein Distance for Language Pair -Mean of all LDND’s of words in common -Synonyms (12%): -take Minimum pair -take Mean
97
ASJP: Automatic Reconstruction97 Comparing languages Levenshtein Distance for Language Pair -Mean of all LDND’s of words in common -Synonyms (12%): -take Minimum pair -take Mean Experimental option
98
ASJP: Automatic Reconstruction98 Comparing languages AVAR (AVA: NAKH-DAGHESTANIAN > AVAR-ANDIC-TSEZIC) / AGUL (AGL: NAKH-DAGHESTANIAN > LEZGIC) I : dun=zun * LDND=36.6 YOU : mun=wun * LDND=36.6 HORN : tLar=k"arC * LDND=66.0 FIRE : c"a=c"a * LDND= 0.0 FULL : c"ura=ac"uf * LDND=66.0 ALT: AGL= ac"ar NEW : c"iya=c"EyEr * LDND=55.0 ALT: AGL= c"ayif COMMON (LDND < 70) = AGL - AVA 6 (=15.8% of 38) LD = 4.01 / LDN = 81.76 / LDND = 89.87
99
ASJP: Automatic Reconstruction99 Comparing languages AVAR (AVA: NAKH-DAGHESTANIAN > AVAR-ANDIC-TSEZIC) / AGUL (AGL: NAKH-DAGHESTANIAN > LEZGIC) I : dun=zun * LDND=36.6 YOU : mun=wun * LDND=36.6 HORN : tLar=k"arC * LDND=66.0 FIRE : c"a=c"a * LDND= 0.0 FULL : c"ura=ac"uf * LDND=66.0 ALT: AGL= ac"ar NEW : c"iya=c"EyEr * LDND=55.0 ALT: AGL= c"ayif COMMON (LDND < 70) = AGL - AVA 6 (=15.8% of 38) LD = 4.01 / LDN = 81.76 / LDND = 89.87
100
ASJP: Automatic Reconstruction100 Comparing languages AVAR (AVA: NAKH-DAGHESTANIAN > AVAR-ANDIC-TSEZIC) / AGUL (AGL: NAKH-DAGHESTANIAN > LEZGIC) I : dun=zun * LDND=36.6 YOU : mun=wun * LDND=36.6 HORN : tLar=k"arC * LDND=66.0 FIRE : c"a=c"a * LDND= 0.0 FULL : c"ura=ac"uf * LDND=66.0 ALT: AGL= ac"ar NEW : c"iya=c"EyEr * LDND=55.0 ALT: AGL= c"ayif COMMON (LDND < 70) = AGL - AVA 6 (=15.8% of 38) LD = 4.01 / LDN = 81.76 / LDND = 89.87
101
ASJP: Automatic Reconstruction101 Comparing languages AVAR (AVA: NAKH-DAGHESTANIAN > AVAR-ANDIC-TSEZIC) / AGUL (AGL: NAKH-DAGHESTANIAN > LEZGIC) I : dun=zun * LDND=36.6 YOU : mun=wun * LDND=36.6 HORN : tLar=k"arC * LDND=66.0 FIRE : c"a=c"a * LDND= 0.0 FULL : c"ura=ac"uf * LDND=66.0 ALT: AGL= ac"ar NEW : c"iya=c"EyEr * LDND=55.0 ALT: AGL= c"ayif COMMON (LDND < 70) = AGL - AVA 6 (=15.8% of 38) LD = 4.01 / LDN = 81.76 / LDND = 89.87
102
ASJP: Automatic Reconstruction102 Comparing languages AVAR (AVA: NAKH-DAGHESTANIAN > AVAR-ANDIC-TSEZIC) / AGUL (AGL: NAKH-DAGHESTANIAN > LEZGIC) I : dun=zun * LDND=36.6 YOU : mun=wun * LDND=36.6 HORN : tLar=k"arC * LDND=66.0 FIRE : c"a=c"a * LDND= 0.0 FULL : c"ura=ac"uf * LDND=66.0 ALT: AGL= ac"ar NEW : c"iya=c"EyEr * LDND=55.0 ALT: AGL= c"ayif COMMON (LDND < 70) = AGL - AVA 6 (=15.8% of 38) LD = 4.01 / LDN = 81.76 / LDND = 89.87
103
ASJP: Automatic Reconstruction103 Comparing languages AVAR (AVA: NAKH-DAGHESTANIAN > AVAR-ANDIC-TSEZIC) / AGUL (AGL: NAKH-DAGHESTANIAN > LEZGIC) I : dun=zun * LDND=36.6 YOU : mun=wun * LDND=36.6 HORN : tLar=k"arC * LDND=66.0 FIRE : c"a=c"a * LDND= 0.0 FULL : c"ura=ac"uf * LDND=66.0 ALT: AGL= ac"ar NEW : c"iya=c"EyEr * LDND=55.0 ALT: AGL= c"ayif COMMON (LDND < 70) = AGL - AVA 6 (=15.8% of 38) LD = 4.01 / LDN = 81.76 / LDND = 89.87
104
ASJP: Automatic Reconstruction104 Comparing languages AVAR (AVA: NAKH-DAGHESTANIAN > AVAR-ANDIC-TSEZIC) / AGUL (AGL: NAKH-DAGHESTANIAN > LEZGIC) I : dun=zun * LDND=36.6 YOU : mun=wun * LDND=36.6 HORN : tLar=k"arC * LDND=66.0 FIRE : c"a=c"a * LDND= 0.0 FULL : c"ura=ac"uf * LDND=66.0 ALT: AGL= ac"ar NEW : c"iya=c"ayif * LDND=55.0 ALT: AGL= c"EyEr COMMON (LDND < 70) = AGL - AVA 6 (=15.8% of 38) LD = 4.01 / LDN = 81.76 / LDND = 89.87
105
ASJP: Automatic Reconstruction105 Comparing languages AVAR (AVA: NAKH-DAGHESTANIAN > AVAR-ANDIC-TSEZIC) / AGUL (AGL: NAKH-DAGHESTANIAN > LEZGIC) I : dun=zun * LDND=36.6 YOU : mun=wun * LDND=36.6 HORN : tLar=k"arC * LDND=66.0 FIRE : c"a=c"a * LDND= 0.0 FULL : c"ura=ac"uf * LDND=66.0 ALT: AGL= ac"ar NEW : c"iya=c"ayif * LDND=55.0 ALT: AGL= c"EyEr COMMON (LDND < 70) = AGL - AVA 6 (=15.8% of 38) LD = 4.01 / LDN = 81.76 / LDND = 89.87
106
ASJP: Automatic Reconstruction106 Comparing languages AVAR (AVA: NAKH-DAGHESTANIAN > AVAR-ANDIC-TSEZIC) / AGUL (AGL: NAKH-DAGHESTANIAN > LEZGIC) I : dun=zun * LDND=36.6 YOU : mun=wun * LDND=36.6 HORN : tLar=k"arC * LDND=66.0 FIRE : c"a=c"a * LDND= 0.0 FULL : c"ura=ac"uf * LDND=66.0 ALT: AGL= ac"ar NEW : c"iya=c"ayif * LDND=55.0 ALT: AGL= c"EyEr COMMON (LDND < 70) = AGL - AVA 6 (=15.8% of 38) LD = 4.01 / LDN = 81.76 / LDND = 89.87
107
ASJP: Automatic Reconstruction107 Comparing languages
108
ASJP: Automatic Reconstruction108 3. Some results: genetic and areal proximity
109
ASJP: Automatic Reconstruction109 Distance Matrix (0.5 * N * (N-1)) FREDUTGALPRTENG… FRE DUT 90.93 GAL71.6290.00 PRT74.3894.6151.87 ENG 91.1763.1991.3095.18 …
110
ASJP: Automatic Reconstruction110 Tools for Trees
111
ASJP: Automatic Reconstruction111 Tools for Trees Input file to your preferred phylogenetic software using an editor such as TextPad (www.textpad.com)www.textpad.com
112
ASJP: Automatic Reconstruction112 Tools for Trees Input file to your preferred phylogenetic software using an editor such as TextPad (www.textpad.com)www.textpad.com Run data using phylogenetic software such as SplitsTree (www.splitstree.org)www.splitstree.org
113
ASJP: Automatic Reconstruction113 Tools for Trees Input file to your preferred phylogenetic software using an editor such as TextPad (www.textpad.com)www.textpad.com Run data using phylogenetic software such as SplitsTree (www.splitstree.org)www.splitstree.org Choose the most appropriate algorithm (Neighbour Joining for distance data)
114
ASJP: Automatic Reconstruction114 Tools for Trees Input file to your preferred phylogenetic software using an editor such as TextPad (www.textpad.com)www.textpad.com Run data using phylogenetic software such as SplitsTree (www.splitstree.org)www.splitstree.org Choose the most appropriate algorithm (Neighbour Joining for distance data) Prepare tree for presentation using using a tool such as the Tree Explorer of MEGA
115
ASJP: Automatic Reconstruction115 Salishan Languages (n=30)
116
ASJP: Automatic Reconstruction116 NeighborJoining Salishan Languages (n=30)
117
ASJP: Automatic Reconstruction117 UPGMA NeighborJoining
118
ASJP: Automatic Reconstruction118 UPGMA NeighborJoining
119
ASJP: Automatic Reconstruction119 NeighborJoining NeighborJoining:
120
ASJP: Automatic Reconstruction120 NeighborJoining NeighborJoining: - specifically meant for phylogenetic trees
121
ASJP: Automatic Reconstruction121 NeighborJoining NeighborJoining: - specifically meant for phylogenetic trees - takes distance as point of departure
122
ASJP: Automatic Reconstruction122 NeighborJoining NeighborJoining: - specifically meant for phylogenetic trees - takes distance as point of departure - does NOT assume equal rate of change
123
ASJP: Automatic Reconstruction123 Mayan (n=38)
124
ASJP: Automatic Reconstruction124 Calibration of Method Calibration: best options, parameters, factors: A. for pure classification:
125
ASJP: Automatic Reconstruction125 Calibration of Method Calibration: best options, parameters, factors: A. for pure classification: - existing classifications (Ethnologue; WALS; mainly the well-documented areas)
126
ASJP: Automatic Reconstruction126 Calibration of Method Calibration: best options, parameters, factors: A. for pure classification: - existing classifications (Ethnologue; WALS; mainly the well-documented areas) - expert knowledge of specific areas
127
ASJP: Automatic Reconstruction127 Calibration of Method Calibration: best options, parameters, factors: A. for pure classification: - existing classifications (Ethnologue; WALS; mainly the well-documented areas) - expert knowledge of specific areas diversion ±12% niche!
128
ASJP: Automatic Reconstruction128 Calibration of Method Calibration: best options, parameters, factors: B. for dating:
129
ASJP: Automatic Reconstruction129 Calibration of Method Calibration: best options, parameters, factors: B. for dating: - linguistically crucial historic events:
130
ASJP: Automatic Reconstruction130 Linguistically crucial events c. 250Goths conquer Daciasplit of E-W Romance 4th cIrish invade Scotlandsplit of Irish-Scottish Gaelic 5th c German kingdoms in W Roman Empirebreakup of W Romance 5th cGermans invade Britainsplit of English-Frisian 5th-6th cBritons flee to Brittanysplit of Welsh-Breton 400-600Hieroglyphic evidenceCh'olan begins to split 768-814 Name of Charlemagne attestedProto-Slavic Date Historical event Linguistic event
131
ASJP: Automatic Reconstruction131 Linguistically crucial events c. 250Goths conquer Daciasplit of E-W Romance 4th cIrish invade Scotlandsplit of Irish-Scottish Gaelic 5th c German kingdoms in W Roman Empirebreakup of W Romance 5th cGermans invade Britainsplit of English-Frisian 5th-6th cBritons flee to Brittanysplit of Welsh-Breton 400-600Hieroglyphic evidenceCh'olan begins to split 768-814 Name of Charlemagne attestedProto-Slavic Date Historical event Linguistic event
132
ASJP: Automatic Reconstruction132 Linguistically crucial events c. 250Goths conquer Daciasplit of E-W Romance 4th cIrish invade Scotlandsplit of Irish-Scottish Gaelic 5th c German kingdoms in W Roman Empirebreakup of W Romance 5th cGermans invade Britainsplit of English-Frisian 5th-6th cBritons flee to Brittanysplit of Welsh-Breton 400-600Hieroglyphic evidenceCh'olan begins to split 768-814 Name of Charlemagne attestedProto-Slavic Date Historical event Linguistic event
133
ASJP: Automatic Reconstruction133 Calibration of Method Calibration: best options, parameters, factors: B. for dating: - linguistically crucial historic events Standard formula (Swadesh): TimeDepth = log(Similarity) / 2 log Retention
134
ASJP: Automatic Reconstruction134 Calibration of Method Calibration: best options, parameters, factors: B. for dating: - linguistically crucial historic events Standard formula: TimeDepth = log(Similarity) / 2 log Retention
135
ASJP: Automatic Reconstruction135 Calibration of Method Calibration: best options, parameters, factors: B. for dating: - linguistically crucial historic events Standard formula: TimeDepth = log(LDND) / 2 log Retention
136
ASJP: Automatic Reconstruction136 Calibration of Method Calibration: best options, parameters, factors: B. for dating: - linguistically crucial historic events Standard formula: TimeDepth = log(LDND) / 2 log Retention
137
ASJP: Automatic Reconstruction137 Linguistically crucial events Timelinguistic event LDND Ret 1.75split of E-W Romance0.67530.73 1.65split of Irish-Scottish Gaelic0.66870.72 1.55breakup of W Romance0.64110.72 1.55split of English-Frisian0.65740.71 1.50split of Welsh-Breton0.57050.75 1.40Ch'olan begins to split0.53690.76 1.21Proto-Slavic0.58770.69 MEAN:0.73
138
ASJP: Automatic Reconstruction138 Calibration of Method Calibration: best options, parameters, factors: B. for dating: - linguistically crucial historic events: - Standard formula: TimeDepth = log(LDND) / 2 log 73
139
ASJP: Automatic Reconstruction139 Calibration of Method Calibration: best options, parameters, factors: B. for dating: - linguistically crucial historic events: - Standard formula: TimeDepth = log(LDND) / 2 log 73 < 75%
140
ASJP: Automatic Reconstruction140 Calibration of Method Calibration: best options, parameters, factors: B. for dating: - linguistically crucial historic events: - Standard formula: TimeDepth = log(LDND) / 2 log 73 < 75% Deeper!
141
ASJP: Automatic Reconstruction141 Glottochronology only? Calibration of method: Glottochronology: all based on lexical distance
142
ASJP: Automatic Reconstruction142 Glottochronology only? Calibration of method: Glottochronology: all based on lexical distance Add other linguistic domains …
143
ASJP: Automatic Reconstruction143 Glottochronology only? Calibration of method: Glottochronology: all based on lexical distance Add other linguistic domains … WALS Typological databaseWALS
144
ASJP: Automatic Reconstruction144 Glottochronology only? Calibration of method: Glottochronology: all based on lexical distance Add other linguistic domains … WALS Typological databaseWALS Best result: (75% 40 lex) + (25% 40 Ph/M/S features)
145
ASJP: Automatic Reconstruction145 4. On Inheritance vs Borrowing
146
ASJP: Automatic Reconstruction146 Inherited or borrowed? AVAR (AVA) / AGUL (AGL)
147
ASJP: Automatic Reconstruction147 Inherited or borrowed? AVAR (AVA) / AGUL (AGL) I : dun=zun * LDND=36.6 YOU : mun=wun * LDND=36.6 HORN : tLar=k"arC * LDND=66.0 FIRE : c"a=c"a * LDND= 0.0 FULL : c"ura=ac"uf * LDND=66.0 NEW : c"iya=c"EyEr * LDND=55.0
148
ASJP: Automatic Reconstruction148 Inherited or borrowed? AVAR (AVA) / AGUL (AGL) I : dun=zun * LDND=36.6 YOU : mun=wun * LDND=36.6 HORN : tLar=k"arC * LDND=66.0 FIRE : c"a=c"a * LDND= 0.0 FULL : c"ura=ac"uf * LDND=66.0 NEW : c"iya=c"EyEr * LDND=55.0 6 items < 70.0
149
ASJP: Automatic Reconstruction149 Inherited or borrowed? AVAR (AVA) / AGUL (AGL) I : dun=zun * LDND=36.6 YOU : mun=wun * LDND=36.6 HORN : tLar=k"arC * LDND=66.0 FIRE : c"a=c"a * LDND= 0.0 FULL : c"ura=ac"uf * LDND=66.0 NEW : c"iya=c"EyEr * LDND=55.0 6 items < 70.0 Genetically related !!
150
ASJP: Automatic Reconstruction150 Inherited or borrowed? SPANISH (SPA) / CHAMORRO (CHA)
151
ASJP: Automatic Reconstruction151 Inherited or borrowed? SPANISH (SPA) / CHAMORRO (CHA) ONE : uno=unu * LDND=36.9 TWO : dos=dos * LDND= 0.0 PERSON : persona=petsona * LDND=55.3 STAR : estreya=estrecas * LDND=61.2 NIGHT : noCe=noces * LDND=68.2 NEW : nuevo=nueba * LDND=44.2
152
ASJP: Automatic Reconstruction152 Inherited or borrowed? SPANISH (SPA) / CHAMORRO (CHA) ONE : uno=unu * LDND=36.9 TWO : dos=dos * LDND= 0.0 PERSON : persona=petsona * LDND=55.3 STAR : estreya=estrecas * LDND=61.2 NIGHT : noCe=noces * LDND=68.2 NEW : nuevo=nueba * LDND=44.2 6 items < 70.0
153
ASJP: Automatic Reconstruction153 Inherited or borrowed? SPANISH (SPA) / CHAMORRO (CHA) ONE : uno=unu * LDND=36.9 TWO : dos=dos * LDND= 0.0 PERSON : persona=petsona * LDND=55.3 STAR : estreya=estrecas * LDND=61.2 NIGHT : noCe=noces * LDND=68.2 NEW : nuevo=nueba * LDND=44.2 6 items < 70.0: RELATED ???
154
ASJP: Automatic Reconstruction154 Inherited or borrowed? SPANISH (SPA) / CHAMORRO (CHA) ONE : uno=unu * LDND=36.9 TWO : dos=dos * LDND= 0.0 PERSON : persona=petsona * LDND=55.3 STAR : estreya=estrecas * LDND=61.2 NIGHT : noCe=noces * LDND=68.2 NEW : nuevo=nueba * LDND=44.2 RELATED ??? NO!!!
155
ASJP: Automatic Reconstruction155 Inherited or borrowed? SPANISH (SPA) / CHAMORRO (CHA) ONE : uno=unu * LDND=36.9 TWO : dos=dos * LDND= 0.0 PERSON : persona=petsona * LDND=55.3 STAR : estreya=estrecas * LDND=61.2 NIGHT : noCe=noces * LDND=68.2 NEW : nuevo=nueba * LDND=44.2 INDO-EUROPEAN AUSTRONESIAN
156
ASJP: Automatic Reconstruction156 Inherited or borrowed? SPANISH (SPA) / CHAMORRO (CHA) ONE : uno=unu * LDND=36.9 TWO : dos=dos * LDND= 0.0 PERSON : persona=petsona * LDND=55.3 STAR : estreya=estrecas * LDND=61.2 NIGHT : noCe=noces * LDND=68.2 NEW : nuevo=nueba * LDND=44.2 CHANCE?
157
ASJP: Automatic Reconstruction157 Inherited or borrowed? SPANISH (SPA) / CHAMORRO (CHA) ONE : uno=unu * LDND=36.9 TWO : dos=dos * LDND= 0.0 PERSON : persona=petsona * LDND=55.3 STAR : estreya=estrecas * LDND=61.2 NIGHT : noCe=noces * LDND=68.2 NEW : nuevo=nueba * LDND=44.2 CHANCE? ~ 5% (i.e. 1 – 2 items)
158
ASJP: Automatic Reconstruction158 Inherited or borrowed? SPANISH (SPA) / CHAMORRO (CHA) ONE : uno=unu * LDND=36.9 TWO : dos=dos * LDND= 0.0 PERSON : persona=petsona * LDND=55.3 STAR : estreya=estrecas * LDND=61.2 NIGHT : noCe=noces * LDND=68.2 NEW : nuevo=nueba * LDND=44.2 BORROWING through LANGUAGE CONTACT
159
ASJP: Automatic Reconstruction159 Inherited or borrowed? SPANISH (SPA) INDO-EUROPEAN (128) > ROMANCE / CHAMORRO (CHA) AUSTRONESIAN (310) > CHAMORRO ONE : uno=unu * LDND=36.9
160
ASJP: Automatic Reconstruction160 Inherited or borrowed? SPANISH (SPA) INDO-EUROPEAN (128) > ROMANCE / CHAMORRO (CHA) AUSTRONESIAN (310) > CHAMORRO ONE : uno=unu * LDND=36.9 SPA <> CHA:
161
ASJP: Automatic Reconstruction161 Inherited or borrowed? SPANISH (SPA) INDO-EUROPEAN (128) > ROMANCE / CHAMORRO (CHA) AUSTRONESIAN (310) > CHAMORRO ONE : uno=unu * LDND=36.9 SPA <> CHA: fam/gen= 0.24/0.82
162
ASJP: Automatic Reconstruction162 Inherited or borrowed? SPANISH (SPA) INDO-EUROPEAN (128) > ROMANCE / CHAMORRO (CHA) AUSTRONESIAN (310) > CHAMORRO ONE : uno=unu * LDND=36.9 SPA <> CHA: fam/gen= 0.24/0.82 > 0.03/0.00
163
ASJP: Automatic Reconstruction163 Inherited or borrowed? SPANISH (SPA) INDO-EUROPEAN (128) > ROMANCE / CHAMORRO (CHA) AUSTRONESIAN (310) > CHAMORRO ONE : uno=unu * LDND=36.9 SPA <> CHA: fam/gen= 0.24/0.82 > 0.03/0.00 phon pattern fit= 12.00 > 0.67
164
ASJP: Automatic Reconstruction164 Inherited or borrowed? SPANISH (SPA) INDO-EUROPEAN (128) > ROMANCE / CHAMORRO (CHA) AUSTRONESIAN (310) > CHAMORRO ONE : uno=unu * LDND=36.9 SPA <> CHA: fam/gen= 0.24/0.82 > 0.03/0.00 phon pattern fit= 12.00 > 0.67 …
165
ASJP: Automatic Reconstruction165 Borrowed! SPANISH (SPA) INDO-EUROPEAN (128) > ROMANCE / CHAMORRO (CHA) AUSTRONESIAN (310) > CHAMORRO ONE : uno=unu * LDND=36.9 SPA > CHA: fam/gen= 0.24/0.82 > 0.03/0.00 phon pattern fit= 12.00 > 0.67 …
166
ASJP: Automatic Reconstruction166 Borrowing SPANISH (SPA) INDO-EUROPEAN (128) > ROMANCE / CHAMORRO (CHA) AUSTRONESIAN (310) > CHAMORRO TWO : dos=dos * LDND= 0.0 SPA > CHA f/g= 0.62/1.00 > 0.12/0.00 swF=100.00 > 0.22
167
ASJP: Automatic Reconstruction167 Borrowing SPANISH (SPA) INDO-EUROPEAN (128) > ROMANCE / CHAMORRO (CHA) AUSTRONESIAN (310) > CHAMORRO PERSON : persona=petsona * LDND=55.3 SPA > CHA f/g= 0.20/0.64 > 0.01/0.00 swF=32.40 > 0.13
168
ASJP: Automatic Reconstruction168 Borrowing SPANISH (SPA) INDO-EUROPEAN (128) > ROMANCE / CHAMORRO (CHA) AUSTRONESIAN (310) > CHAMORRO PERSON : persona=petsona * LDND=55.3 SPA > CHA f/g= 0.20/0.64 > 0.01/0.00 swF=32.40 > 0.13 ALT: CHA= taotao (0.41/0.00)
169
ASJP: Automatic Reconstruction169 Borrowing SPANISH (SPA) INDO-EUROPEAN (128) > ROMANCE / CHAMORRO (CHA) AUSTRONESIAN (310) > CHAMORRO PERSON : persona=petsona * LDND=55.3 SPA > CHA f/g= 0.20/0.64 > 0.01/0.00 swF=32.40 > 0.13 ALT: CHA= taotao (0.41/0.00)
170
ASJP: Automatic Reconstruction170 Borrowing SPANISH (SPA) INDO-EUROPEAN (128) > ROMANCE / CHAMORRO (CHA) AUSTRONESIAN (310) > CHAMORRO STAR : estreya=estrecas * LDND=61.2 SPA > CHA f/g= 0.17/0.82 > 0.00/0.00 swF=100.00 > 4.44 ALT: CHA= puti7on (0.03/0.00)
171
ASJP: Automatic Reconstruction171 Borrowing SPANISH (SPA) INDO-EUROPEAN (128) > ROMANCE / CHAMORRO (CHA) AUSTRONESIAN (310) > CHAMORRO NIGHT : noCe=noces * LDND=68.2 SPA > CHA f/g= 0.23/0.55 > 0.04/0.00 swF=100.00 > 0.10 ALT: CHA= pw~eNi (0.23/0.00)
172
ASJP: Automatic Reconstruction172 Borrowing SPANISH (SPA) INDO-EUROPEAN (128) > ROMANCE / CHAMORRO (CHA) AUSTRONESIAN (310) > CHAMORRO NEW : nuevo=nueba * LDND=44.2 SPA > CHA f/g=0.50/0.64 > 0.04/0.00 swF=4.27 > 0.03
173
ASJP: Automatic Reconstruction173 5. Conclusions
174
ASJP: Automatic Reconstruction174 Conclusions - Method for automatic reconstruction of language relationships
175
ASJP: Automatic Reconstruction175 Conclusions - Method for automatic reconstruction of language relationships - Assess, discuss and correct existing classifications
176
ASJP: Automatic Reconstruction176 Conclusions - Method for automatic reconstruction of language relationships - Assess, discuss and correct existing classifications - Test hypotheses about genetic distances in time
177
ASJP: Automatic Reconstruction177 Conclusions - Method for automatic reconstruction of language relationships - Assess, discuss and correct existing classifications - Test hypotheses about genetic distances in time - Locate potential borrowings
178
ASJP: Automatic Reconstruction178 Conclusions - Method for automatic reconstruction of language relationships - Assess, discuss and correct existing classifications - Test hypotheses about genetic distances in time - Locate potential borrowings - C O R E: incremental lexical database (> 35%)
179
ASJP: Automatic Reconstruction179 Conclusions - Method for automatic reconstruction of language relationships - Assess, discuss and correct existing classifications - Test hypotheses about genetic distances in time - Locate potential borrowings - C O R E: incremental lexical database (> 35%) One day: Online
180
ASJP: Automatic Reconstruction180 Conclusions - Method for automatic reconstruction of language relationships - Assess, discuss and correct existing classifications - Test hypotheses about genetic distances in time - Locate potential borrowings - C O R E: incremental lexical database (> 35%) One day: Online Cooperation!!
181
ASJP: Automatic Reconstruction181 Holman et al. (forthc. 2008) Explorations in automated language classificationExplorations in automated language classification. Folia Linguistica Brown et al. (forthc. 2008) Automated Classification of the World’s languages: A description of the method and prelimary results Sprachtypologie und Universalienforschung + Several working papers email.eva.mpg.de./~wichmann/ASJPHomePage
182
ASJP: Automatic Reconstruction182 ?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.