Presentation is loading. Please wait.

Presentation is loading. Please wait.

Algebra II. To provide a quality mathematics background in order for you to succeed in future endeavors. 2.

Similar presentations


Presentation on theme: "Algebra II. To provide a quality mathematics background in order for you to succeed in future endeavors. 2."— Presentation transcript:

1 Algebra II

2 To provide a quality mathematics background in order for you to succeed in future endeavors. 2

3 Follow school rules No cell phone during instruction Class starts when you walk in door Bring appropriate materials Make-up work Tutoring Work, Work, Work!!! 3

4  40% Tests  40% Daily  20% Exam 4

5  Calculator Scientific and Graphing  Binder  Paper  Pencils  Graph Paper 5 Algebra II

6 AAA Batteries Expo Markers Kleenex Paper Towels 6 Algebra II

7  Notes  Assignments  HW answers 7

8 apryle.douglas@lamarcountyschools.org ) 8

9 Algebra II Factoring Polynomials

10 Greatest Common Factor Difference of Two Squares Sum/Difference of Two Cubes Trinomials Grouping 10

11 11 1. 16x 3 – 12x 2 + 4x 2. 15xy 2 – 25x 2 y GCF: 4x 4x(4x 2 – 3x + 1) GCF: 5xy 5xy(3y – 5x)

12 3. 27m 3 p 2 + 9mp - 54p 2 4. 10x – 40y 12 GCF: 9p 9p(3m 3 p + m – 6p) GCF: 10 10(x – 4y)

13 1. 4x 2 – 9 2. 9x 2 – y 2 3. 16x 2 + 25 4. 1 – 25y 2 5. 49y 4 – 9z 2 6. 81p 2 – 25 13 (2x – 3)(2x + 3) (3x – y)(3x + y) NOT A DIFF. (1 – 5y)(1 + 5y) (7y 2 – 3z)(7y 2 + 3z) (9p – 5)(9p + 5)

14 1. x 2 – 12x – 28 2. x 2 + 3x – 10 3. x 2 + 12xy + 35y 2 4. y 4 – 10y 2 – 24 1. x 2 – 8x + 15 2. p 2 + 3p – 40 14 (x + 2)(x – 14) (x – 2)(x + 5) (x + 5y)(x + 7y) (y 2 – 4)(y 2 – 6) (y – 2)(y + 2)(y 2 – 6) (x – 3)(x – 5) (p – 5)(p + 8)

15 1. 3x 2 – 17x + 10 2. 4x 2 – 4xz – 3z 2 3. 49x 2 – 14x + 1 4. 16y 2 + 8y + 1 5. 5x 4 + 17x 2 + 14 6. 3p 2 + pq – 10q 2 15 (3x – 2)(x – 5) (2x – 3z)(2x + 1z) (7x – 1)(7x – 1) (4y + 1)(4y + 1) (5x + 7)(x + 2) (3p – 5q)(p + 2q)

16 7. 8m 2 – 29mn – 12n 2 8. 12x 2 + 19x + 5 9. 4x 2 – 10x + 3 10. 16y 2 + 2yz – 3z 2 11. 9x 2 + 12x + 4 12. 6p 2 – 13p + 5 16 (m – 4n)(8m + 3n) (3x + 1)(4x + 5) prime (2y + 1z)(8y – 3z) (3x + 2)(3x + 2) (2p – 1)(3p – 5)

17 1. x 3 + 8 (x + 2)(x 2 – 2x + 4) 2. 8x 3 – 1 (2x – 1)(4x 2 +2x+1) 3. x 3 – 27 (x – 3)(x 2 + 3x + 9) 4. 8x 3 – 125y 6 (2x–5y 2 )(4x 2 +10xy 2 +25y 4 ) 17

18 5. 25x 4 – 36 **Not a Perfect Cube** (5x 2 – 6)(5x 2 + 6) 6. 8x 3 + 27 (2x +3)(4x 2 – 6x+9) 7. 125x 9 – 27y 3 (5x 3 –3y)(25x 6 +15x 3 y+9y 2 ) 8. 9x 8 – 25y 6 **Not a Perfect Cube** (3x 4 – 5y 3 )(3x 4 + 5y 3 ) 18

19 1. x 3 – 2x 2 – 9x + 18 (x 3 – 2x 2 ) + (–9x + 18) x 2 (x – 2) – 9(x – 2) (x – 2)(x 2 – 9) (x – 2)(x – 3)(x + 3) 2. bx 2 + 2a + 2b + ax 2 (bx 2 + 2a) + (2b + ax 2 ) No GCF, so reorder. (bx 2 +2b) + (2a + ax 2 ) b(x 2 + 2) + a(2 + x 2 ) (x 2 + 2)(b + a) 19

20 3. 8x 3 – 12x 2 – 2x + 3 (8x 3 – 12x 2 ) + (–2x + 3) 4x 2 (2x – 3) –1(2x – 3) (2x – 3)(4x 2 – 1) (2x – 3)(2x – 1)(2x + 1) 4. 2x 3 – x 2 + 2x – 1 (2x 3 – x 2 ) + (2x – 1) x 2 (2x – 1) + 1(2x–1) (2x – 1)(x 2 + 1) 20

21 1. 16x 4 – 81 2. 2x 6 – 6x 4 – 20x 2 3. 8x 3 – 343 4. x 4 – 6x 2 – 27 5. 3x 3 – 7x 2 –12x + 28 6. 3x 4 – x 2 – 4 21

22 1. 3x 2 – 27 2. 4x 2 + 4x – 8 3. 5x 2 – 20 4. 14x 2 + 2x - 12 22 Algebra II 3(x 2 – 9) 3(x – 3)(x + 3) 4(x 2 + x – 2) 4(x – 1)(x + 2) 5(x 2 – 4) 5(x – 2)(x + 2) 2(7x 2 + x – 6) 2(7x – 6)(x + 1)

23 5. 2u 2 + 8u 6. 10x 2 + 34x + 28 7. 4x 4 – 64x 2 8. 30x 2 – 57x + 21 23 Algebra II 2u(u + 4) 2(5x 2 + 17x + 14) 2(5x + 7)(x + 2) 4x 2 (x 2 – 16) 4x 2 (x – 4)(x + 4) 3(10x 2 – 19x + 7) 3(2x – 1)(5x – 7)


Download ppt "Algebra II. To provide a quality mathematics background in order for you to succeed in future endeavors. 2."

Similar presentations


Ads by Google