Download presentation
Presentation is loading. Please wait.
Published byEdgar Stephens Modified over 9 years ago
1
EE 7730 2D Fourier Transform
2
Bahadir K. Gunturk EE 7730 - Image Analysis I 2 Summary of Lecture 2 We talked about the digital image properties, including spatial resolution and grayscale resolution. We reviewed linear systems and related concepts, including shift invariance, causality, convolution, etc.
3
Bahadir K. Gunturk EE 7730 - Image Analysis I 3 Fourier Transform What is ahead? 1D Fourier Transform of continuous signals 2D Fourier Transform of continuous signals 2D Fourier Transform of discrete signals 2D Discrete Fourier Transform (DFT)
4
Bahadir K. Gunturk EE 7730 - Image Analysis I 4 Fourier Transform: Concept ■ A signal can be represented as a weighted sum of sinusoids. ■ Fourier Transform is a change of basis, where the basis functions consist of sines and cosines.
5
Bahadir K. Gunturk EE 7730 - Image Analysis I 5 Fourier Transform Cosine/sine signals are easy to define and interpret. However, it turns out that the analysis and manipulation of sinusoidal signals is greatly simplified by dealing with related signals called complex exponential signals. A complex number: z = x + j*y A complex exponential signal: r*exp(j*a) =r*cos(a) + j*r*sin(a)
6
Bahadir K. Gunturk EE 7730 - Image Analysis I 6 Fourier Transform: 1D Cont. Signals ■ Fourier Transform of a 1D continuous signal ■ Inverse Fourier Transform “Euler’s formula”
7
Bahadir K. Gunturk EE 7730 - Image Analysis I 7 Fourier Transform: 2D Cont. Signals ■ Fourier Transform of a 2D continuous signal ■ Inverse Fourier Transform ■ F and f are two different representations of the same signal.
8
Bahadir K. Gunturk EE 7730 - Image Analysis I 8 Examples Magnitude: “how much” of each component Phase: “where” the frequency component in the image
9
Bahadir K. Gunturk EE 7730 - Image Analysis I 9 Examples
10
Bahadir K. Gunturk EE 7730 - Image Analysis I 10 Fourier Transform: Properties ■ Linearity ■ Shifting ■ Modulation ■ Convolution ■ Multiplication ■ Separable functions
11
Bahadir K. Gunturk EE 7730 - Image Analysis I 11 Fourier Transform: Properties ■ Separability 2D Fourier Transform can be implemented as a sequence of 1D Fourier Transform operations.
12
Bahadir K. Gunturk EE 7730 - Image Analysis I 12 Fourier Transform: Properties ■ Energy conservation
13
Bahadir K. Gunturk EE 7730 - Image Analysis I 13 Fourier Transform: Properties ■ Remember the impulse function (Dirac delta function) definition ■ Fourier Transform of the impulse function
14
Bahadir K. Gunturk EE 7730 - Image Analysis I 14 Fourier Transform: Properties ■ Fourier Transform of 1 Take the inverse Fourier Transform of the impulse function
15
Bahadir K. Gunturk EE 7730 - Image Analysis I 15 Fourier Transform: 2D Discrete Signals ■ Fourier Transform of a 2D discrete signal is defined as where ■ Inverse Fourier Transform
16
Bahadir K. Gunturk EE 7730 - Image Analysis I 16 Fourier Transform: Properties ■ Periodicity: Fourier Transform of a discrete signal is periodic with period 1. 1 1 Arbitrary integers
17
Bahadir K. Gunturk EE 7730 - Image Analysis I 17 Fourier Transform: Properties ■ Linearity, shifting, modulation, convolution, multiplication, separability, energy conservation properties also exist for the 2D Fourier Transform of discrete signals.
18
Bahadir K. Gunturk EE 7730 - Image Analysis I 18 Fourier Transform: Properties ■ Linearity ■ Shifting ■ Modulation ■ Convolution ■ Multiplication ■ Separable functions ■ Energy conservation
19
Bahadir K. Gunturk EE 7730 - Image Analysis I 19 Fourier Transform: Properties ■ Define Kronecker delta function ■ Fourier Transform of the Kronecker delta function
20
Bahadir K. Gunturk EE 7730 - Image Analysis I 20 Fourier Transform: Properties ■ Fourier Transform of 1 To prove: Take the inverse Fourier Transform of the Dirac delta function and use the fact that the Fourier Transform has to be periodic with period 1.
21
Bahadir K. Gunturk EE 7730 - Image Analysis I 21 Impulse Train ■ Define a comb function (impulse train) as follows where M and N are integers
22
Bahadir K. Gunturk EE 7730 - Image Analysis I 22 Impulse Train Fourier Transform of an impulse train is also an impulse train:
23
Bahadir K. Gunturk EE 7730 - Image Analysis I 23 Impulse Train
24
Bahadir K. Gunturk EE 7730 - Image Analysis I 24 Impulse Train In the case of continuous signals:
25
Bahadir K. Gunturk EE 7730 - Image Analysis I 25 Impulse Train
26
Bahadir K. Gunturk EE 7730 - Image Analysis I 26 Sampling
27
Bahadir K. Gunturk EE 7730 - Image Analysis I 27 Sampling No aliasing if
28
Bahadir K. Gunturk EE 7730 - Image Analysis I 28 Sampling If there is no aliasing, the original signal can be recovered from its samples by low-pass filtering.
29
Bahadir K. Gunturk EE 7730 - Image Analysis I 29 Sampling Aliased
30
Bahadir K. Gunturk EE 7730 - Image Analysis I 30 Sampling Anti-aliasing filter
31
Bahadir K. Gunturk EE 7730 - Image Analysis I 31 Sampling ■ Without anti-aliasing filter: ■ With anti-aliasing filter:
32
Bahadir K. Gunturk EE 7730 - Image Analysis I 32 Anti-Aliasing a=imread(‘barbara.tif’);
33
Bahadir K. Gunturk EE 7730 - Image Analysis I 33 Anti-Aliasing a=imread(‘barbara.tif’); b=imresize(a,0.25); c=imresize(b,4);
34
Bahadir K. Gunturk EE 7730 - Image Analysis I 34 Anti-Aliasing a=imread(‘barbara.tif’); b=imresize(a,0.25); c=imresize(b,4); H=zeros(512,512); H(256-64:256+64, 256-64:256+64)=1; Da=fft2(a); Da=fftshift(Da); Dd=Da.*H; Dd=fftshift(Dd); d=real(ifft2(Dd));
35
Bahadir K. Gunturk EE 7730 - Image Analysis I 35 Sampling
36
Bahadir K. Gunturk EE 7730 - Image Analysis I 36 Sampling No aliasing if and
37
Bahadir K. Gunturk EE 7730 - Image Analysis I 37 Interpolation Ideal reconstruction filter:
38
Bahadir K. Gunturk EE 7730 - Image Analysis I 38 Ideal Reconstruction Filter
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.