Download presentation
Presentation is loading. Please wait.
Published byImogen Simmons Modified over 9 years ago
1
Software Verification 2 Automated Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität and Fraunhofer Institut für Rechnerarchitektur und Softwaretechnik
2
Slide 2 H. Schlingloff, SS2012: SWV 2 LTL Model Checking Algorithm 12.4.2012
3
Slide 3 H. Schlingloff, SS2012: SWV 2 Improvements bitstate hashing incomplete hashing partial order techniques 12.4.2012
4
Slide 4 H. Schlingloff, SS2012: SWV 2 CTL model checking For each LTS/model there is exactly one computation tree CTL model checking works directly on the model (no need to extract computation sequences) For all subformulas of a formula and all states of a given model, mark whether the state satisfies the subformula iteration on formulas according to their inductive definition if p is an atomic proposition, then p M = I(p) M ={} (φ ψ) M = (M-φ M +ψ M ) (EXφ) M = {w | w‘ (wRw‘ w‘ φ M )} E(φU + ψ) M = {w | there is a path α from w and a w‘ on α such that (w<w‘ w‘ ψ M ) w‘‘ (w<w‘‘<w‘ w‘‘ φ M )} A(φU + ψ) M = {w | for all paths α from w there is a w‘ on α such that (w<w‘ w‘ ψ M ) w‘‘ (w<w‘‘<w‘ w‘‘ φ M )} 12.4.2012
5
Slide 5 H. Schlingloff, SS2012: SWV 2 Actual Calculation How to calculate (EX ψ) M from ψ M ? Inverse image construction How to calculate E(φU + ψ) M or A(φU + ψ) M from φ M and ψ M ? 12.4.2012
6
Slide 6 H. Schlingloff, SS2012: SWV 2 12.4.2012
7
Slide 7 H. Schlingloff, SS2012: SWV 2 Inverse reachability calculation 12.4.2012
8
Slide 8 H. Schlingloff, SS2012: SWV 2 Symbolic Representation Modelchecking algorithm deals with sets of states and with relations (sets of pairs of states) Need an efficient representation 12.4.2012
9
Slide 9 H. Schlingloff, SS2012: SWV 2 6.5.2008 Binary Encoding of Domains Any variable on a finite domain D can be replaced by log(D) binary variables similar to encoding of data types by compilers e.g. var v: {0..15} can be replaced by var v1,v2,v3,v4: boolean (0=0000, 1= 0001, 2=0010, 3=0011,..., 15=1111) State space still in the order of original domain! e.g. three int8-variables can have 2 24 =10 8 states e.g. array of length 10 with 10-bit values 10 30 states Representation of large sets of states?
10
Slide 10 H. Schlingloff, SS2012: SWV 2 6.5.2008 Representation of Sets
11
Slide 11 H. Schlingloff, SS2012: SWV 2 6.5.2008 Ordered Tree Form Normal form for propositional formulas Uses only the connective Ite Linear ordering on the set of propositions e.g., most significant bit first Shannon expansion
12
Slide 12 H. Schlingloff, SS2012: SWV 2 6.5.2008 Truth table and tree form formula Reduction: Replace Ite (v,ψ,ψ) by ψ
13
Slide 13 H. Schlingloff, SS2012: SWV 2 6.5.2008 Abbreviations Introduce abbreviations maximally abbreviated
14
Slide 14 H. Schlingloff, SS2012: SWV 2 6.5.2008 Binary Decision Trees (BDTs) Binary decision tree Elimination of isomorphic subtrees (abbreviations)
15
Slide 15 H. Schlingloff, SS2012: SWV 2 6.5.2008 Binary Decision Diagrams (BDDs) Elimination of redundant nodes (redundant subformulas) Ite (v,ψ,ψ) by ψ
16
Slide 16 H. Schlingloff, SS2012: SWV 2 6.5.2008 Calculation of BDDs
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.