Download presentation
0
Collaborators: David R. Nelson, Ariel Amir
Two methods of numerically computing the inverse localization length in one dimension Naomichi Hatano University of Tokyo Collaborators: David R. Nelson, Ariel Amir
1
Chebyshev polynomial expansion (2015)
Non-Hermitian Anderson model (1996)
2
Anderson Localization
3
Anderson Localization
4
In Three Dimensions density of states localized extended energy
Fermi energy Fermi energy mobility edge
5
In One Dimension Destructive interference
6
In One Dimension κ : inverse localization length
Almost all states are localized. κ : inverse localization length
7
Inverse Localization Length
higher energy → long localization length → small κ lower energy → short localization length → large κ κ : inverse localization length
8
1d tight-binding model −3 −2 −1 1 2 3 hopping random potential
9
1d tight-binding model
10
Transfer-matrix method
11
Non-Hermitian Anderson model (1996)
1d tight-binding model Non-Hermitian Anderson model (1996)
12
Non-Hermitian Anderson model
N. Hatano and D.R. Nelson, PRL 77 (96) 570; PRB 56 (97) 8651 −3 −2 −1 1 2 3
13
Non-Hermitian Anderson model
N. Hatano and D.R. Nelson, PRL 77 (96) 570; PRB 56 (97) 8651
14
Non-Hermitian Anderson model
N. Hatano and D.R. Nelson, PRL 77 (96) 570; PRB 56 (97) 8651 1000 sites, periodic boundary condition
15
Imaginary Vector Potential
N. Hatano and D.R. Nelson, PRL 77 (96) 570; PRB 56 (97) 8651 imaginary vector potential vector potential
16
N. Hatano and D.R. Nelson, PRL 77 (96) 570; PRB 56 (97) 8651
Gauge Transformation N. Hatano and D.R. Nelson, PRL 77 (96) 570; PRB 56 (97) 8651 Gauge Transformation
17
Imaginary Gauge Transformation
N. Hatano and D.R. Nelson, PRL 77 (96) 570; PRB 56 (97) 8651 Imaginary Gauge Transformation
18
Non-Hermitian Anderson model
N. Hatano and D.R. Nelson, PRL 77 (96) 570; PRB 56 (97) 8651 1000 sites, periodic boundary condition
19
Imaginary Gauge Transformation
N. Hatano and D.R. Nelson, PRL 77 (96) 570; PRB 56 (97) 8651
20
1d tight-binding model
21
Non-Hermitian Anderson model
N. Hatano and D.R. Nelson, PRL 77 (96) 570; PRB 56 (97) 8651 1000 sites, periodic boundary condition
22
Non-Hermitian Anderson model (1996)
1000 sites 1 sample
23
Random-hopping model
24
Imaginary Gauge Transformation
N. Hatano and D.R. Nelson, PRL 77 (96) 570; PRB 56 (97) 8651 periodic boundary condition
25
Non-Hermitian Anderson model
N. Hatano and D.R. Nelson, PRL 77 (96) 570; PRB 56 (97) 8651
26
1000 sites 1 sample Chebyshev polynomial expansion (2015)
Non-Hermitian Anderson model (1996) 1000 sites 1 sample
27
Chebyshev Polynomial Expansion of the density of states
R.N. Silver and H. Röder (1994) N×N Hermitian matrix: H : Chebyshev polynomial
28
Chebyshev Polynomial Expansion of the density of states
R.N. Silver and H. Röder (1994)
29
Chebyshev Polynomial Expansion of the density of states
R.N. Silver and H. Röder (1994) Recursive Relation
30
Chebyshev Polynomial Expansion of the density of states
R.N. Silver and H. Röder (1994) (i) (ii) cutoff (iii)
31
Chebyshev Polynomial Expansion of the density of states
1000 sites 1 sample up to 1000th order
32
Thouless Formula D.J. Thouless, J. Phys. C 5 (1972) 77
33
Chebyshev Polynomial Expansion of the inverse localization length
N. Hatano (2015) (n ≥ 1)
34
Chebyshev Polynomial Expansion of the inverse localization length
N. Hatano (2015) (i) (ii) cutoff (iii)
35
Chebyshev Polynomial Expansion of the inverse localization length
N. Hatano (2015) Chebyshev polynomial expansion (2015) 1000 sites 1 sample up to 1000th order Non-Hermitian Anderson model (1996)
36
J. Feinberg and A. Zee, PRE 59 (1999) 6433
Random Sign Model J. Feinberg and A. Zee, PRE 59 (1999) 6433 −3 −2 −1 1 2 3
37
Random Sign Model E 10000 sites 1 sample
MOTHRA: Random Sign Model J. Feinberg and A. Zee, PRE 59 (1999) 6433 E 10000 sites 1 sample
38
A. Amir, N. Hatano and D.R. Nelson, work in progress
Random Sign Model A. Amir, N. Hatano and D.R. Nelson, work in progress −3 −2 −1 1 2 3
39
A. Amir, N. Hatano and D.R. Nelson, work in progress
Random Sign Model A. Amir, N. Hatano and D.R. Nelson, work in progress E κ = 0.1 g=0.0 10000 sites 1 sample g=0.1 10000 sites 1 sample
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.