Download presentation
Presentation is loading. Please wait.
Published byElvin White Modified over 9 years ago
1
TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A AA A
2
Quantitative increase brings about qualitative change - Hegel The whole is greater than the sum of its parts It is a fundamental idea in condensed matter physics
3
A plausible answer is that there is no such a clear-cut critical size eg. thermodynamic limit The present talk aims to deliver an alternative definite answer
4
N, V → ∞ at fixed N/V Analytic partition function generates analytic function only Well known statement : Phase transition arises only in this limit
5
Easy to observe discontinuous phase transitions Avogadro Number is still finite ! ~ 10^26 << ∞ Density of H 2 O
6
Our primary interest lies on a system with definite particle number N We wish to study the precise dependence on N
7
Canonical partition function : key quantity Z N (¯, V) = Tr(e - ¯H ) where ¯ = (k B T ) - 1
8
P = (1/¯) V ln Z N S = k B (1{¯ ¯ ) ln Z N E = { ¯ ln Z N C V = (k B /N) ¯ 2 2 ¯ ln Z N
9
Realistic constraint Helps to realize phase transition Finding the inverse : P(T,V) → V(T,P)
10
Water in a box At constant V : heating up If you open it : easy to boil
11
Temperature derivative : T P = T { ( T P/ V P) V Specific heat : C P = T P (E +PV )/N = C V { ( V S) 2 /(k B ¯N V P) Denominator V P may vanish !
12
V P possesses indefinite sign V P = ¯ ( V E Ã { V E Ã ) 2 { 2 V E Ã V P 0 Stable V P 0 Unstable
13
To generate instability & singularity : Canonical Ensemble + Constant Pressure constraint
14
Many identical particles... distinguishable : (1/2)^N identical : 1 / (N+1) have nontrivial statistics
15
Grand canonical partition function Z = ¦ Ã (1 { η e - ¯E Ã ) - 1 = exp( k=1 ¸ k η k /k) where ¸ k := Ã e - k¯E Ã
16
Partition sum : (1+1+1, 1+2, 3) for N=3 Hardy-Ramanujan formula ~ exp (N 1/2 )
17
det( N ) → : Distinguishable Determinant have 2 N terms
18
η Z = η exp( k ¸ k η k /k) = Z k ¸ k η k - 1 N 2 calculation : Our key formula for Numerical Computation
19
Identical bosonic particles collapse to the ground state at low T
20
Ideal Bose gas in cubic box : Dirichlet where Functions of dimensionless q : Z N, ¯ ¯ = q ln q q, V V = ({2/d) q ln q q
21
¿ V := k B ( 2 m/¼ 2 ~ 2 ) T(V / N) 2/d ¿ P := k B ( 2 m/¼ 2 ~ 2 ) d/(d+2) TP - 2/(d+2) Á := {(1/N) ¯V 2 V P v P := ( 2 m/¼ 2 ~ 2 ) d/(d+2) (V / N)P d/(d+2) e P := k B ( 2 m/¼ 2 ~ 2 ) d/(d+2) TP - 2/(d+2)
22
¿ V := k B ( 2 m/¼ 2 ~ 2 ) T(V / N) 2/d ¿ P := k B ( 2 m/¼ 2 ~ 2 ) d/(d+2) TP - 2/(d+2) Á := {(1/N) ¯V 2 V P v P := ( 2 m/¼ 2 ~ 2 ) d/(d+2) (V / N)P d/(d+2) e P := k B ( 2 m/¼ 2 ~ 2 ) d/(d+2) TP - 2/(d+2)
23
¿ V = {N - 2/d /ln q ¿ P = {1/(ln q [(2/d) q q ln Z N ] 2/(d+2) ) Á = {(1/N)[(({2/d) q ln q q ) 2 {({2/d) q ln q q ] ln Z N v P = (¿ V /¿ P ) - 2/d e P = {(1/N)({2/d) 2/(d+2) ( 2 m/¼ 2 ~ 2 ) d/(d+2) (q ln q q ln Z N ) (2d+2)/(d+2)
24
As : Condensate
25
As : Classical ideal gas
26
d = 3 Fortran 90 program based on Recurrence relation Extended Precision : 35 significant digits Used Supercomputer system with 480 nodes & 5.6TFlop/s
27
N = 1, 10, 100, 10000 Constant volume curves
28
Constant pressure curves
29
Supercooling & Superheating points : 1 atm & Helium-4 mass : 1.686, 1.689 K ( cf. 2.17K, 4.22K )
30
Ideal Bose gas under constant pressure for N ≥ 7616 1 st order phase transition : supercooling/heating, BEC, triple valued Cp, discontinuities
31
Dimension & Geometry dependence : Cubic box in 3D → 7616 V P = 0 is only way for finite system to realize singularity
32
Low energy strong coupling limit of YM matrix model H ~ tr { ½ (¦ I ) 2 + ¼ g 2 [X I,X J ] 2 + fermionic }
33
¸ k = #(q k ) 3 (s - k +1+s k ), s = exp({¯!)
34
Separation of drop and V expansion
35
Z = ¦ à (1 + η e - ¯E à ) = exp( k=1 ¸ k η k /k) with ¸ k = ({1) k - 1 à e - k¯E à Expand ¦ à (1 + η e - ¯E à ) directly with à = ( n x, n y, n z, spin ) Danke schön !
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.