Presentation is loading. Please wait.

Presentation is loading. Please wait.

UNCERTAINTIES IN MEASUREMENTS PROPERLY PROCESSING DATA.

Similar presentations


Presentation on theme: "UNCERTAINTIES IN MEASUREMENTS PROPERLY PROCESSING DATA."— Presentation transcript:

1 UNCERTAINTIES IN MEASUREMENTS PROPERLY PROCESSING DATA

2 Every measurement has a doubtful digit. MEASUREMENTS WITH UNCERTAINTIES This ruler measures to the mm (0.1 cm) Every measurement made with a ruler like this has an uncertainty of ± 0.05cm. This is half the smallest division. This measurement is 1.02 ± 0.05 cm. It lies somewhere between 0.97 cm and 1.07 cm. Notice that the measurement and the uncertainty have the same level of precision.

3 Every measurement has a doubtful digit. MEASUREMENTS WITH UNCERTAINTIES This stopwatch measures to 0.01 seconds. This measurement could be 3min and 53.170 seconds or 3 min and 53.179 seconds. This means the uncertainty is ±0.01 seconds and the measurement is 237.17 ± 0.01s.

4 For IB labs, each measurement needs to be repeated at least 3 times. Measurement, measurement For number of repeated values, we find the average. The uncertainty in the average is plus or minus one-half of the range between the maximum value and the minimum value.

5 Raw data should be presented in an easy to understand data table. The headings should state the name of the quantity, its symbol, the units it is measured in and its uncertainty. Recording the data Length l/ cm Δ l = ±0.1 cm 29.4 38.5 48.7 60.5

6 Of course, you will be measuring at least two variables. Here’s an example of using repeated values. Recording the data Length l/ cm Δ l =±0.1 cm Time for 10 Periods 10T/s Δ10T = ±0.01s 60.5 16.77 15.42 15.79

7 Of course, you will be measuring at least two variables. Here’s an example of using repeated values. Recording the data Length l/ cm Δ l =±0.1 cm Time for 10 Periods 10T/s Δ10T = ±0.01s 60.5 16.77 15.42 15.79 Average Time for 10 Periods 16.0

8 Of course, you will be measuring at least two variables. Here’s an example of using repeated values. Recording the data Length l/ cm Δ l =±0.1 cm Time for 10 Periods 10T/s Δ10T = ±0.01s 60.5 16.77 15.42 15.79 Average Time for 10 Periods 16.0 Average Period 1.60 When dividing a measurement by a pure number, divide its uncertainty as well.

9 Basic Rules This is called the absolute or raw uncertainty

10 Basic Rules

11 This is called the fractional or relative uncertainty The relative uncertainty multiplied by 100% is called the percentage uncertainty.

12 Basic Rules

13

14 When adding or subtracting uncertainties, you ADD the ABSOLUTE uncertainties. Summary of the Basics When multiplying or dividing uncertainties, you ADD the PERCENTAGE uncertainties. When stating uncertainties the uncertainty must have 1 sig fig and must have the same level of precision of the measurement itself.

15  To straighten some curves, we use the reciprocal values. The uncertainties MUST be processed properly. Reciprocal calculation

16  Some graphs need a variable raised to an exponent to be linearized. Again, the uncertainties MUST be properly processed. Power Function

17 Calculate the volume of a sphere whose radius is measured to be You Try

18 Gradient Uncertainties Error bars must be shown on the graph for the variable with the most significant uncertainty. Data point Min value the data point could have Max value the data point could have

19 Sample Graph This data has the responding variable with a fixed absolute value of uncertainty of ±2 cm

20 Sample Graph Here the uncertainty in the responding variable is a fixed percentage of 5%

21 Sample Graph Here is the best straight line. The variables are proportional since the best straight line passes through the origin (accounting for error) and through each point. But the slope measurement must have uncertainties associated with it as well.

22 Sample Graph To get the uncertainty in the slope value, we will look at the maximum slope and the minimum slope then calculate half the range.

23 Sample Graph The max slope is 25.357. The min slope is 19.643. The best slope is 23.226. We would record the slope as 23.226 ±2.857. With sig figs, it is 23 ±3.


Download ppt "UNCERTAINTIES IN MEASUREMENTS PROPERLY PROCESSING DATA."

Similar presentations


Ads by Google