Download presentation
Presentation is loading. Please wait.
Published byLaura Dawson Modified over 9 years ago
1
Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier Promoter Dr. Saroj P. Dash Co- supervisor Andre Dankert Examiner Dr. Thilo Bauch 1
2
Outline Introduction & Motivation Device Fabrication Electrical measurements Spin transport measurements Summary 2
3
Spintronics Quantum property of electrons Spin +1/2 (clock wise) -1/2 (anti clockwise) Two possible spin states represent the "0" and "1" states in logical operations * Low power consumption - Energy scale for the charge interaction ~ eV, - spin interaction ~100 meV. Non-volatile memory Integration between the logic and storage devices. Advantages 3
4
Spin polarization in ferromagnet E Majority Spin Minority Spin 4
5
Giant Magnetoresistance (GMR) Baibich et al. PRL 61, 2472(1988) Binasch et al. PRB 39, 4828 (1989) 2007 Nobel prize for Physics P. Grünberg A. Fert 5
6
Tunnel Magnetoresistance (TMR) Co CoFe MgO 5K 300 K Anti-parallel Parallel Data storage > 500 GB MRAM Moodera et al. PRL 74, 3273 (1995) Parkin et al. Nature Mat. 3, 868 (2004) 6
7
Opportunities for new technology Silicon MOSFET - scaling for smaller and faster transistor 22 nm 32 nm45 nm 2012201020082020 Spin-Electronics Process information Semiconductor chip Combining the best of both worlds Storage information Magnetic hard disc 7
8
Spin transistor Major challenges Spin Injection Transport Detection Manipulation Spin Injection Transport Detection Manipulation Room Temperature n- and p- type Si Room Temperature n- and p- type Si Ferromagnet Gate Silicon Ferromagnet Low spin –orbit coupling Low hyperfine interaction Longer spin life time in Si Available technology Advantage of Si Spintronics 8
9
Creation of Spin polarization in Si All optical method Electrical Injection Optical detection Electrical Injection Optical detection All electrical method at Room Temperature All electrical method at Room Temperature Lampel, Phys. Rev. Lett. 20, 491 (1968) Jonker, Nature Phys. 3, 542 (2007) Dash, Nature 462, 491 (2009) 9
10
My Thesis p- Silicon SiO 2 Cobalt IV Ferro magnet h + SiO 2 p-type Silicon W ϕBϕB Fabrication of devices Electrical characterization Spin-transport measurement Fabrication of devices Electrical characterization Spin-transport measurement Ozone oxidized SiO 2 p-type Silicon (Boron Doping Dependence) To study the effect of Schottky barrier width on spin injection and extraction 10
11
Outline Introduction & Motivation Device Fabrication Electrical measurements Spin transport measurements Summary 11
12
Fabrication p-type Silicon SiO 2 Cobalt Cr/Au 12
13
Fabrication 300 nm SiO 2 Silicon BHF TB Silicon UV lamp O3O3 Au Co Silicon Au/Cr Au/Cr cont. by lift off Au/Cr cont. by lift off Au Co Silicon Au/Co Evaporation patterning by ion-beam etching patterning by ion-beam etching 13
14
Microscope images of device Contact holes Au/Co definition Cr/Au contact pads Cr/Au Au/Co/SiO 2 /p-Si 14
15
Microscope images of device Hall Bar 15
16
Outline Introduction & Motivation Device Fabrication Electrical measurements Resistivity and Hall measurement Schottky barrier height and width Spin transport measurements Spin injection and detection in p-Si Doping dependence studies Summary 16
17
Electrical measurements Resistivity measurement d = distance between two contacts over which voltage is measured, W = channel width and t = thickness of the channel Silicon p-10x10 -2 p11x10 -5 p+7.2x10 -5 p++5x10 -5 17
18
Electrical measurements Hall measurement 18
19
Silicon Doping concentration cm -3 Carrier mobility cm 2 V -1 s -1 Diffusion coefficients cm 2 s -1 p-1.34x10 15 10x10 -2 46611.65 p5.4x10 18 11x10 -5 1092.72 p+1.5x10 19 7.2x10 -5 571.42 p++2.1x10 19 5x10 -5 440.8 Electrical measurements Silicon parameters 19
20
Schottky barrier 20
21
Schottky barrier I V Cr/Au Au/Co/SiO 2 /p-Si p- Silicon Tunnel barrier Ferromagnet IV 21
22
Schottky barrier Ferro magnet h + SiO 2 p-type Silicon W ϕBϕB 22
23
eV Schottky barrier Schottky barrier height is 0.23 eV 23
24
Siliconp-pp+p++ Schottky barrier width (nm) 736 13.52 8.26 7.02 Schottky barrier 24
25
Outline Introduction & Motivation Device Fabrication Electrical measurements Resistivity and Hall measurement Schottky barrier height and width Spin transport measurements Spin injection and detection in p ++ Si Doping dependence studies Summary 25
26
Hole Injection Hole Extraction J-V curve I-V measurement Resistance at -200 mV = 1.3 KΩ Co/SiO 2 /p++ Si B doped 5 mOhm.cm B doped 5 mOhm.cm 26
27
Spin Injection ∆μ∆μ E Silicon Tunnel barrier Ferromagnet I V 27
28
Spin-signal has a Lorentzian line-shape The half width is inversely proportional to the spin-lifetime Spin detection by Hanle effect ∆μ∆μ E E ∆μ ̴ 0 ∆μ∆μ B Larmor frequency 28
29
Spin Detection by Hanle effect P++ type Si/SiO 2 /Co 300 K 29
30
Spin life time and Polarization in p ++ Si ∆V=929 uV Spin Lifetime τ = 49 ps Spin polarization P=10.38 % 300 K ∆V=929 uV Δµ = 2.ΔV/TSP = 5.3 mV TSP = 0.35 30
31
Spin Extraction P++ type Si/SiO 2 /Co 300 K 800 mV 300 K 800 mV B doped 5 mOhm.cm B doped 5 mOhm.cm 31
32
Bias dependence 32
33
Bias dependence 33
34
Temperature dependence - 200 mV Weak temperature dependence indicates - true spin accumulation in silicon over the full temperature range 34
35
Outline Introduction & Motivation Device Fabrication Electrical measurements Resistivity and Hall measurement Schottky barrier height and width Spin transport measurements Spin injection and detection in p ++ Si Doping dependence studies Summary 35
36
Ferro magnet h + SiO 2 p-type Silicon 300 K Doping Dependence W ϕBϕB 36
37
Spin-signal increases with reducing Schottky barrier width Doping Dependence of Spin signal Spin injection 37
38
Bias dependence Direct tunneling Dominating As expected P++ type Si 38
39
Bias dependence P+ type Si 39
40
Bias dependence P+ type Si 40
41
Bias dependence P type Si 41
42
Bias dependence of Spin signal 42
43
Spin injection model Doping Total Junction RA (KΩ.μm 2 ) -200mV SiO2 barrier RA (KΩ.μm 2 ) p338 x10 4 1 x10 4 p+16 x10 4 1 x10 4 p++2.6 x10 4 1 x10 4 Direct tunneling (when R SC is small) Two step tunneling (When R SC is large) Tran et al., PRL 102, 036601, 2009 R tun R SC 43
44
Direct tunneling Dominating As expected Hole Spin Injection Hole Spin Extraction Doping Junction RA (KΩ.μm 2 ) @-200mV V Si -V FM Junction RA (KΩ.μm 2 ) @+200mV V Si -V FM p++2.6 x10 4 1.068 x10 4 44
45
Spin reversal during extraction Doping Junction RA (KΩ.μm 2 ) @+200m V V Si -V FM Junction RA (KΩ.μm 2 ) @+800mV V Si -V FM p27.62 x10 4 0.678 x10 4 Localized state Paramagnetic in nature 45
46
Spin reversal during injection Doping Junction RA (KΩ.μm 2 ) @-200mV V Si -V FM Junction RA (KΩ.μm 2 ) @-800mV V Si -V FM p338x10 4 151.9 x10 4 p+ 16.68 x10 4 14.23 x10 4 46
47
Summary Large spin accumulation in p-type Si using SiO2 tunnel barrier ( ~ 10%) Lower limit for Spin life time ( ~ 50 ps), Spin diffusion length > 60 nm Higher doping in Si higher spin accumulation, due to reduction in Schottky barrier width Spin reversal phenomena observed when Schottky barrier width is higher Schottky barrier width determines the spin transport behavior (sequential and/or direct tunneling) 47
48
Saroj P. Dash Andre Dankert Michel Houssa Guido Groeseneken Acknowledgement Thilo Bauch QDP members MC2 Staffs Goran Johansson All my friends in Chalmers 48
49
Thank You!!! 49
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.