Presentation is loading. Please wait.

Presentation is loading. Please wait.

Gamma-ray Astronomy of XXI Century 100 MeV – 10 TeV.

Similar presentations


Presentation on theme: "Gamma-ray Astronomy of XXI Century 100 MeV – 10 TeV."— Presentation transcript:

1 Gamma-ray Astronomy of XXI Century 100 MeV – 10 TeV

2 1 keV1MeV1 GeV1 TeV FocusingCoded mask Compton telescopes  -conversion + calorimeter EGRET, Fermi Cherenkov telescopes Collimators

3 Objects visible in gamma-rays: -GRBs -Blazars & AGNs -Gamma-ray pulsars -Supernova remnants -Diffuse background

4 1991 – 2000 «Compton, EGRET» 30 MeV – 100 GeV 2008 Fermi 20 MeV – 300 GeV 2000 - Cherenkov telescopes 20 GeV - 50 TeV

5 Batse GRBs

6 Fermi

7 Pass 7 vs. Pass 6 Pass 6 Pass 7 The break is very close to the He II absorption threshold! Pass 6 front/back

8

9 Gamma-ray bursts

10 Coincidence time + location 50 s 2o2o Express search for transients in Fermi data

11 3-x coincidence Near-polar horizon

12

13 Vela pulsar Geminga 3C454 GRB Fall 2009 (4 of 12 GRBs) Now ~100

14 Short ~1.5 s Time, s

15 > 30 GeV

16

17

18

19 Quasars Cyg A 3C 273 M 87

20

21 E > 1 GeV

22 E > 100 MeV

23

24 3C454.3

25

26

27  –  -> e + e - He II Ly  edge 53 eV

28 Stern & Poutanen Photon-photon absorption breaks in Fermi spectra of bright blazars  GeV +  UV  e+ e- Poutanen & Stern 2010 Stern & Poutanen 2011 Stern & Poutanen 2014 Jet Broad line region

29

30 Pass6 Stacking analisys Stern & Poutanen 2012 Fortunately unpublished

31 medium ionization  = 1.5 medium ionization High ionization  = 2.5 high ionization  –  absorption He II Ly  and H Ly 

32 44 66

33 Broad line region~ 10 3 R g Infrared dust radiation~ 10 5 R g CMB 10 8 R g Where the GeV radiation comes from? Looks like from ~ 10 3 RG  ~ sqrt(R/Rc) The jet launch is from the BH (Blandford-Znajek) Disk launch implies >10 4 RG

34 Emission mechanism is still unknown 1.Fermi acceleration in the jet due to internal perturbation (internal shocks, turbulence) + external Compton + some synchrotron Don’t speak about synchrotron – self Compton!!! 1.Photon breeding Stern & Poutanen 2006 – 2008 High energy photons produce a viscous friction between the jet and the external environment (works at  > 20 and a “strong” external environment) The jet is decelerated down to G ~ 15 independently of initial G

35 FSRQs (broad emission lines, softer spectra, softer low energy hump, very powerful) Versus BL Lacs (no broad emission lines, harder spectra, harder low energy hump, less powerful)

36 BL Lacs z ~ 0.05 – 0.4

37 Гамма-пульсары

38 Gamma-pulsars

39 Absorbed spectra of gamma-pulsars E a ~ 1 – 5 GeV

40 Fermi Yield Blazars 1100 (650 – BL-Lacs + 450 – FSRQs) AGNs 680 Gamma-ray pulsars 137 +29 Unidentified 1000

41 Diffuse emission from dark regions of the sky (0.25) Galactic plane  o production? The diffuse background

42

43

44 Galactic center 4 o Here people “observed” the dark matter annihilation line

45 Cosmic rays + gamma pulsars Galactic emission Galactic plane Galactic center

46

47 CTA ~ 0.4 km 2 (North) + 4 km 2 (South) H.E.S.S. II 10 5 m, energy threshold 20 GeV

48 MAGIC ~10 4 m 2 Threshold 25 GeV Mkn 421

49 VERITAS 10 5 m 2 50 GeV Arizona

50 4100 kg Calorimeter 25 l r Gamma-400

51 Conclusions: 1.Gamma-ray astronomy becomes a precise science due to Fermi. 2.The uncertainties in calibration much exceed statistical errors 3.The main task for Cherenkov telescopes is the cross- calibration with Fermi and coordinated observations (IMHO) 4.The gap between X-rays and 100 Mev should be covered by any means 5.Open data are of crucial importance


Download ppt "Gamma-ray Astronomy of XXI Century 100 MeV – 10 TeV."

Similar presentations


Ads by Google