Download presentation
Presentation is loading. Please wait.
Published byFrank Felix Beasley Modified over 9 years ago
1
Jonathan Tennyson Physics and Astronomy, University College London Columbus June 2013 Molecular line lists for exoplanets and other atmosheres Artist’s impression of HD189733b C. Carreau, ESA
2
5 year project from May 2011 Provide data for all molecular transitions important for exoplanet atmospheres Methodology: first principles quantum mechanical calculations, informed by experiment J Tennyson and S.N. Yurchenko, MNRAS, 425, 21 (2012).
3
3 Taken from Bill Borucki 2012: (nearly) every star has planets
4
Transit of Venus June 8 th 2004 June 5 th /6 th 2012 Next: 10 th December 2117
5
Radial velocity / Occultation Period = 3.52 days Mass = 0.69 ±0.05 M Jupiter Radius = 1.35 ±0.04 R Jupiter Density = 0.35 ±0.05 g/cm 3 HD 209458b
6
Beaulieu et al., 2007 Knutson et al., 2007 HD189733b: Primary transit with Spitzer
7
Tinetti et al., Nature, 448, 163 (2007) Water, different T-P Water line list: BT2 Barber et al., 2006
8
Confirmation of Water,methane and hazes! Beaulieu et al., 2007 Knutson et al., 2007 Swain et al., 2008 Pont et al., 2007 G. Tinetti (private communication, 2008)
9
Giovanna Tinetti, UCL So far discovered: Water H 2 O Methane CH 4 Carbon dioxide CO 2 Carbon monoxide CO On HD189733b with more to come HD189733b too hot for life HCCH / HCN degeneracy
10
0.4 - 16 m R ~ 300 ESA M3 candidate mission Giovanna Tinetti (UCL) launch 2024? Exoplanet Characterisation Observatory Telescope Baffle V-groove Side Sunshield GaAs Solar Cells Detectors Service Module 1.5m Silicon Carbide Mirror
11
Frontier Problems in Exoplanet Characterization Non-equilibrium processes in exoplanet atmospheres (Stevenson et al. 2010; Madhusudhan & Seager 2011; Moses et al. 2013) CH 4, CO, NH 3 Constraints on thermal inversions in hot Jupiters (Fortney et al. 2008; Spiegel et al. 2009) TiO, VO, H 2 S C/O ratios and Carbon-rich atmospheres (Fortney et al. 2008; Spiegel et al. 2009) H 2 O, CO, HCN, CH 4, C 2 H 2,TiH, FeH Constraints on exoplanet formation conditions (Madhusudhan et al. 2011; Oberg et al. 2011) H 2 O, CO, CH 4 Atmospheres and interiors of super-Earths (Bean et al. 2011; Desert et al. 2011; Miller-Ricci Kempton et al. 2011 ) H 2 O, CO 2 Slide courtesy of N Madhusudhan (Yale)
12
Primordial (Metal-poor) Terrestrial Planets (Oxidising) Giant-Planets & Cool Stars (Reducing atmospheres) Already available H 2, LiH HeH +, H 3 + H 2 D + OH, CO 2, O 3, NO H 2 O, HDO, NH 3 H 2, CN, CH, CO, CO 2, TiO HCN/HNC, H 2 O, NH 3, ExoMolO 2, CH 4, SO 2, SO 3 HOOH, H 2 CO, HNO 3 CH 4, PH 3, C 2, C 3, HCCH, H 2 S, C 2 H 6, C 3 H 8, VO, O 2, AlO, MgO, CrH, MgH, FeH, CaH, AlH, SiH, TiH, NiH, BeH, YO Molecular line lists for exoplanet & other atmospheres Available from elsewhere Already calculated at UCL Will be calculated during the ExoMol project list of molecules www.exomol.com Full details: J. Tennyson and S.N. Yurchenko, MNRAS, 425, 21 (2012),
13
Why theory, not experiment?
14
Exoplanets
15
Absorption ( T =300K) spectrum of NH 3 : Accuracy Experiment Theory
16
Absorption ( T =300K) spectrum of NH 3 : Accuracy Experiment Theory
17
Absorption ( T =300K) spectrum of NH 3 : Accuracy
18
Theory
19
Completeness: Absorption of ammonia (T=300 K) Less than 30,000 NH 3 lines known experimentally: BYTe contains 1.1 billion lines, about 40,000 times as many! BYTe S.N. Yurchenko, R.J. Barber & J. Tennyson, Mon. Not. R. astr. Soc., 413, 1828 (2011)
20
Absorption spectra of 14 NH 3 : Temperature effect
21
Ab initio calculations DMSPES Variational calculations Rovibrational wavefunctions Rovibrational energies Intensities (Einstein A if ) Line list Refinement Method: Spectrum from the “first-principles”
22
Shayesteh et al 2007 MOLPRO Line list: MgH Potential energy curve Dipole moment curve Line list: 6690 lines, N max =60 Solve for the motion of the nuclei MOLPRO REFINED Ab initio: solve for motion of electrons B Yadin et al, MNRAS 425, 34 (2012) LEVEL 8.0 R. Le Roy, Waterloo, Canada
23
Line list (in progress): C 2 Solve for the motion of the nuclei New program duo Sergei Yurchenko Line list: being computed … Potential energyDipole moment MOLPRO T. W. Schmidt et al 2011 Istvan Szabo REFINED
24
Sakellaris, et al. J. Chem. Phys. 134, 234308 (2011) FeO Not being attempted !
25
Dipole moment LEVEL 8.0 DVR3D C3C3 Potential energy Ab initio 18 electrons Ground electronic state Solve for the motion of the nuclei Line list: Ab initio: solve for motion of electrons to be computed … CASSCF P. Jensen, C. McMichael Rohlfing, and J. Almlöf, 1992, J. Chem. Phys. 97, 3399.
26
Dipole moment TROVE: Yurchenko, Thiel, Jensen 300 K line list, Clara Sousa-Silva PH 3 Potential energy Tunneling motion neglected Solve for the motion of the nuclei Line list: T=300 K ~ 14 M transitons Hot: will be > billion TROVE HITRAN JPL Ab initio PES [CCSD(T)/aug-cc-pV(Q+d)Z] Refined using lab spectra R. I. Ovsyannikov et al. J. Chem. Phys 129, 044309 (2008). Ab initio: CCSD(T)/aug-cc-pVTZ S.N. Yurchenko et al. J. Mol. Spectrosc 239, 71 (2006). TROVE JPL HITRAN First principles Predictions of tunnelling being investigated
27
Dipole moment TROVE Yurchenko, Thiel, Jensen CH 4 9D surface 130 000 geometries Potential energy Ab initio 10 electrons Ground electronic state Three 9D surfaces 130 000 geometries Solve for the motion of the nuclei Line list: Billions of transitions MOLPRO CCSD(T)-f12/QZ MOLPRO CCSD(T)-f12/QZ Ab initio: solve for motion of electrons Sergei Yurchenko
28
Line list for warm Methane (T>600 K, J34 ) : line positions, Einstein coefficients, lower state energies, quantum numbers T=300K 212,000 lines 323,720,766 lines
29
Absorption of Methane (T=300 K) Albert et al., JCP 2008
30
Absorption of Methane (T=300 K) n Albert et al., JCP 2008 3
31
THz absorption of Methane (T=300 K)
32
Absorption spectra of CH 4 : Temperature effect
33
H 2 CO T = 296 K Ahmed Al-Refaie
34
50,000 processor hours. Wavefunctions > 0.8 terabites 221,100 energy levels (all to J=50, E = 30,000 cm ) 14,889 experimentally known 506 Million transitions (PS list has 308M) >100,000 experimentally known with intensities Partition function 99.9915% of Vidler & Tennyson’s value at 3,000K BT2 linelist Barber et al, MNRAS 368, 1087 (2006). http://www.tampa.phys.ucl.ac.uk/ftp/astrodata/water/BT2/
35
Obs: A. Coppalle & P. Vervisch, JQSRT, 35, 121 (1986) New edition of HITEMP: LS Rothman, IE Gordon, RJ Barber, H Dothe, RR Gamache, A Goldman, VI Perevalov, SA Tashkun + J Tennyson, JQSRT, 111, 2139 (2010).
36
BT2 linelist used to to detect/model water Nova-like V838 MonCometary coma Atmosphere of Venus Exoplanets (4 so far!) Brown and M-dwarfs
37
As well as..... Water concentrations in explosions Design of high-T gas sensors Remote detection of forest fires Imaging gas turbine engines Temperature profile in flames Atmospheric models
38
Primordial (Metal-poor) Terrestrial Planets (Oxidising) Giant-Planets & Cool Stars (Reducing atmospheres) Already available H 2, LiH HeH +, H 3 + H 2 D + OH, CO 2, O 3, NO H 2 O, HDO, NH 3 H 2, CN, CH, CO, CO 2, TiO HCN/HNC, H 2 O, NH 3, ExoMolO 2, CH 4, SO 2, SO 3 HOOH, H 2 CO, HNO 3 CH 4, PH 3, C 2, C 3, HCCH, H 2 S, C 2 H 6, C 3 H 8, VO, O 2, AlO, MgO, CrH, MgH, FeH, CaH, AlH, SiH, TiH, NiH, BeH, YO Molecular line lists for exoplanet & other atmospheres list of molecules www.exomol.com Full details: J. Tennyson and S.N. Yurchenko, MNRAS, 425, 21 (2012)
39
Primordial (Metal-poor) Terrestrial Planets (Oxidising) Giant-Planets & Cool Stars (Reducing atmospheres) Already available H 2, LiH HeH +, H 3 + H 2 D + OH, CO 2, O 3, NO H 2 O, HDO, NH 3 H 2, CN, CH, CO, CO 2, TiO HCN/HNC, H 2 O, NH 3, ExoMol In progress Requested O 2, CH 4, SO 2, SO 3 HOOH, H 2 CO, HNO 3 CH 4, PH 3, C 2, C 3, HCCH, H 2 S, C 2 H 4, C 2 H 6, VO, O 2, AlO, MgO, CrH, MgH, FeH, CaH, AlH, SiH, TiH, NiH, BeH, YO Molecular line lists for exoplanet & other atmospheres list of molecules www.exomol.com Full details: J. Tennyson and S.N. Yurchenko, MNRAS, 425, 21 (2012) NaH, HF, HCl SiO, CS, NaCl, KCl
40
H2SH2S HNO 3 C3C3 CrH cross sections AlO NiH VO CH 4 SO 3 HOOH PH 3 C2H4C2H4 CH 2 O MSc students: SiO, CS, NaCl, KCll Citizen scientist: AlH
41
H2SH2S HNO 3 C3C3 CrH cross sections AlO NiH VO CH 4 SO 3 HOOH PH 3 C2H4C2H4 CH 2 O www.exomol.com Ala’a Azzam Sergei Yurchenko Dan Underwood Oleg Polyansky Clara Sousa-Silva Anatoly Pavlyuchko Renia Diamantopoulou Christian Hill Maire Gorman Andrey Yachmenev Andrei Patrascu Lorenzo Lodi Ahmed Al-Refaie
42
www.worldscibooks.com/physics/7574.html About the first edition “The best book for anyone who is embarking on research in astronomical spectroscopy” Contemporary Physics (2006) Published 2011
43
Cool atmospheres : dominated by molecular absorption Brown Dwarfs M-dwarf The molecular opacity problem Exoplanets? M Dwarf Planet Marley & Leggett (2008)
44
Cool stars: T = 2000 – 4000 K Thermodynamics equilibrium, 3-body chemistry C and O combine rapidly to form CO. M-Dwarfs: Oxygen rich, n(O) > n(C) H 2, H 2 O, TiO, ZrO, etc also grains at lower T C-stars: Carbon rich, n(C) > n(O) H 2, CH 4, HCN, C 3, HCCH, CS, C 2, CN, etc S-Dwarfs: n(O) = n(C) Rare. H 2, FeH, MgH, no polyatomics Also (primordeal) ‘metal-free’ stars H, H 2, He, H , H 3 + only at low T
45
Sub-stellar objects: CO less important L-Dwarfs: T ~ 1500 K H 2, H 2 O, CH 4 T-Dwarfs: T ~ 1000 K ‘methane stars’ Y-Dwarfs: T ~ 500 K ammonia signature Exoplanets: hot Jupiters super-Earths How common are these objects? Deuterium burning test using HDO? Burn D only No nuclear synthesis
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.