Download presentation
Presentation is loading. Please wait.
Published byShon Page Modified over 9 years ago
1
CBM at FAIR Walter F.J. Müller, GSI 5 th BMBF-JINR Workshop, 17-19 January 2005
2
17-19 January 2005 5th BMBF-JINR Workshop, Walter F.J. Müller, GSI 2 Outline Physics physics case observables Experiment requirements challenges
3
17-19 January 2005 5th BMBF-JINR Workshop, Walter F.J. Müller, GSI 3 States of strongly interacting matter Compression + heating = quark-gluon plasma (pion production) baryons hadrons partons Neutron starsEarly universe
4
17-19 January 2005 5th BMBF-JINR Workshop, Walter F.J. Müller, GSI 4 Phase diagram of strongly interacting matter Freeze-out points calculated from measured particle ratios using the statistical model baryon density: B 4 ( mT/2 h 2 c 2 ) 3/2 x [exp(( B -m)/T) - exp((- B -m)/T)] baryons - antibaryons Lattice QCD calculations: Fedor & Katz, Ejiri et al. dilute: B 0.04 fm -3 0.24 0 dense: B 1.0 fm -3 6.2 0
5
17-19 January 2005 5th BMBF-JINR Workshop, Walter F.J. Müller, GSI 5 Probing matter at high densities Trajectories calculated by a 3-fluid hydrodynamics model Toneev & Ivanov 30 AGeV trajectory close to critical endpoint
6
17-19 January 20055th BMBF-JINR Workshop, Walter F.J. Müller, GSI 6 SIS 100 Tm SIS 300 Tm U: 35 AGeV p: 90 GeV Compressed Baryonic Matter The future Facility for Antiproton an Ion Research (FAIR)
7
17-19 January 2005 5th BMBF-JINR Workshop, Walter F.J. Müller, GSI 7 Phase diagram of strongly interacting matter CERN-SPS, RHIC, LHC: high temperature, low baryon density GSI SIS300: moderate temperature, high baryon density
8
17-19 January 20055th BMBF-JINR Workshop, Walter F.J. Müller, GSI 8 States of strongly interacting matter “Strangeness" of dense matter ? In-medium properties of hadrons ? Compressibility of nuclear matter? Deconfinement at high baryon densities ?
9
17-19 January 2005 5th BMBF-JINR Workshop, Walter F.J. Müller, GSI 9 CBM Physics Topics and Observables In-medium modifications of hadrons onset of chiral symmetry restoration at high ρ B measure: , , e+e- open charm (D mesons) Strangeness in matter enhanced strangeness production measure: K, , , , Indications for deconfinement at high ρ B anomalous charmonium suppression ? measure: J/ , D Critical point event-by-event fluctuations Color superconductivity precursor effects ?
10
17-19 January 2005 5th BMBF-JINR Workshop, Walter F.J. Müller, GSI 10 Low-mass dileptons: Pb+Au@40 AGeV CERES Collaboration S. Damjanovic and K. Filimonov, nucl-ex/0109017
11
17-19 January 2005 5th BMBF-JINR Workshop, Walter F.J. Müller, GSI 11 Meson production in central Au+Au SIS18 SIS100/ 300 W. Cassing, E. Bratkovskaya, A. Sibirtsev, Nucl. Phys. A 691 (2001) 745
12
17-19 January 2005 5th BMBF-JINR Workshop, Walter F.J. Müller, GSI 12 Open Charm detection D meson production in pN collisions Some hadronic decay modes D (c = 317 m): D + K 0 + (2.9 0.26%) D + K - + + (9 0.6%) D 0 (c = 124.4 m): D 0 K - + (3.9 0.09%) D 0 K - + + - (7.6 0.4%) Measure displaced vertex with resolution of 30 μm !
13
17-19 January 2005 5th BMBF-JINR Workshop, Walter F.J. Müller, GSI 13 CBM Setup Radiation hard Silicon pixel/strip detectors in a magnetic dipole field Electron detectors: RICH & TRD & ECAL: pion suppression up to 10 5 Hadron identification: RPC, RICH Measurement of photons, π 0, η, and muons: ECAL
14
17-19 January 2005 5th BMBF-JINR Workshop, Walter F.J. Müller, GSI 14 CBM Technical Status Report
15
CBM Collaboration : 42 institutions, 14 countries Croatia: RBI, Zagreb Cyprus: Nikosia Univ. Czech Republic: Czech Acad. Science, Rez Techn. Univ. Prague France: IReS Strasbourg Germany: Univ. Heidelberg, Phys. Inst. Univ. HD, Kirchhoff Inst. Univ. Frankfurt Univ. Kaiserslautern Univ. Mannheim Univ. Marburg Univ. Münster FZ Rossendorf GSI Darmstadt Russia: CKBM, St. Petersburg IHEP Protvino INR Troitzk ITEP Moscow KRI, St. Petersburg Kurchatov Inst., Moscow LHE, JINR Dubna LPP, JINR Dubna LIT, JINR Dubna LTP, JINR Dubna MEPhi, Moskau Obninsk State Univ. PNPI Gatchina SINP, Moscow State Univ. St. Petersburg Polytec. U. Spain: Santiago de Compostela Univ. Ukraine: Shevshenko Univ., Kiev Univ. of Kharkov Hungaria: KFKI Budapest Eötvös Univ. Budapest Korea: Korea Univ. Seoul Pusan National Univ. Norway: Univ. Bergen Poland: Krakow Univ. Warsaw Univ. Silesia Univ. Katowice Portugal: LIP Coimbra Romania: NIPNE Bucharest
16
17-19 January 2005 5th BMBF-JINR Workshop, Walter F.J. Müller, GSI 16 CBM & Дубна From first page of CBM Collaboration List 4 Labs 38 Persons
17
17-19 January 2005 5th BMBF-JINR Workshop, Walter F.J. Müller, GSI 17 Experimental Challenges 10 7 Au+Au reactions/sec (beam intensities up to 10 9 ions/sec, 1 % target) determination of (displaced) vertices with high resolution ( 30 m) identification of electrons and hadrons Central Au+Au collision at 25 AGeV: URQMD + GEANT4 160 p 360 - 330 + 360 0 41 K + 13 K -
18
17-19 January 2005 5th BMBF-JINR Workshop, Walter F.J. Müller, GSI 18 Pion misidentification a)0%b)0.01% c)0.1%d)1%
19
17-19 January 2005 5th BMBF-JINR Workshop, Walter F.J. Müller, GSI 19 Experimental Conditions Hit rates for 10 7 minimum bias Au+Au collisions at 25 AGeV: Rates of > 10 kHz/cm 2 in large part of detectors ! main thrust of our detector design studies
20
17-19 January 2005 5th BMBF-JINR Workshop, Walter F.J. Müller, GSI 20 CBM DAQ Requirements Profile D and J/Ψ signal drives the rate capability requirements D signal drives FEE and DAQ/Trigger requirements Problem similar to B detection, see BTeV, LHCb Adopted approach: displaced vertex 'trigger' in first level, like in BTeV Additional Problem: DC beam→ interactions at random times → time stamps with ns precision needed → explicit event association needed Current design for FEE and DAQ/Trigger: Self-triggered FEE: All hits shipped with time stamp Data-push architecture: L1 trigger throughput limited but not latency limited Quite different from the usual LHC style electronics Substantial R&D needed
21
17-19 January 2005 5th BMBF-JINR Workshop, Walter F.J. Müller, GSI 21 Conventional FEE-DAQ-Trigger Layout Detector Cave Shack FEE Buffer L2 Trigger L1 Trigger DAQ L1 Accept L0 Trigger f bunch Archive Trigger Primitives Especially instrumented detectors Dedicated connections Specialized trigger hardware Limited capacity Limited L1 trigger latency Modest bandwidth Standard hardware
22
17-19 January 2005 5th BMBF-JINR Workshop, Walter F.J. Müller, GSI 22 L1 Select FPGA and CPU mix High bandwidth The way out: use Data Push Architecture Detector Cave Shack FEE DAQ f clock L2 Select Self-triggered front-end Autonomous hit detection No dedicated trigger connectivity All detectors can contribute to L1 Large buffer depth available System is throughput-limited and not latency-limited Modular design: Few multi-purpose rather many special-purpose modules
23
17-19 January 2005 5th BMBF-JINR Workshop, Walter F.J. Müller, GSI 23 Toward Multi-Purpose FEE Chain PreAmp pre Filter ADC Hit Finder Hit Finder digital Filter digital Filter Backend & Driver Backend & Driver Si Strip Pad GEM's PMT APD's Anti- Aliasing Filter Sample rate: 10-100 MHz Dyn. range: 8...>12 bit 'Shaping' 1/t Tail cancellation Baseline restorer Hit parameter estimators: Amplitude Time Clustering Buffering Link protocol All potentially in one mixed-signal chip
24
17-19 January 2005 5th BMBF-JINR Workshop, Walter F.J. Müller, GSI 24 CBM DAQ and Online Event Selection Data flow: ~ 1 TB/sec 1 st level selection: ~ 1 Pops Data flow: ~ 1 GB/sec
25
17-19 January 20055th BMBF-JINR Workshop, Walter F.J. Müller, GSI 25 CBM R&D working packages Feasibility studies Simulations D Kπ(π) GSI Darmstadt, Czech Acad. Sci., Rez Techn. Univ. Prague ,ω, e + e - Univ. Krakow JINR-LHE Dubna J/ψ e + e - INR Moscow GSI π, K, p ID Heidelberg Univ, Warsaw Univ. Kiev Univ. NIPNE Bucharest INR Moscow Framework GSI Tracking KIP Univ. Heidelberg Univ. Mannheim JINR-LHE Dubna JINR-LIT Dubna Design & construction of detectors Silicon Pixel IReS Strasbourg Frankfurt Univ., GSI Darmstadt, RBI Zagreb, Univ. Krakow Silicon Strip Moscow State Univ CKBM St. Petersburg KRI St. Petersburg Univ. Obninsk RPC-TOF LIP Coimbra, Univ. Santiago Univ. Heidelberg, GSI Darmstadt, Warsaw Univ. NIPNE Bucharest INR Moscow FZ Rossendorf IHEP Protvino ITEP Moscow RBI Zagreb Univ. Marburg MWPC TRD JINR-LHE, Dubna GSI Darmstadt, Univ. Münster NIPNE Bucharest Straw TRD JINR-LPP, Dubna FZ Rossendorf FZ Jülich Tech. Univ. Warsaw ECAL ITEP Moscow GSI Darmstadt Univ. Krakow RICH IHEP Protvino GSI Darmstadt KIP Univ. Heidelberg Univ. Mannheim GSI Darmstadt JINR-LIT, Dubna Univ. Bergen KFKI Budapest Silesia Univ. Katowice Warsaw Univ. Magnet JINR-LHE, Dubna GSI Darmstadt FEE, DAQ, Online Event Selection, Computing J/ψ μ + μ - PNPi St. Petersburg SPU St. Petersburg Λ, Ξ,Ω PNPi St. Petersburg SPU St. Petersburg Ring finder JINR-LIT, Dubna Theory: JINR-LTP, Dubna
26
17-19 January 2005 5th BMBF-JINR Workshop, Walter F.J. Müller, GSI 26 CBM – Event Reconstruction & Analysis Track finding Hough transform Cellular automaton Conformal mapping 3D track following Track fitting Kalman filter Kalman filter (projections) Parabolic approximation Polynomial approximation Orthogonal polynomial set Primary vertex fitting Minimization of impact parameters Geometrical Kalman filter Secondary vertex fitting Geometrical Kalman filter Mass and topological constrained fit RICH ring finding Track extrapolation Hough transform Elastic net Robust fitter LHE LIT LHE LIT LHE LIT Analysis....... Λ-Analysis low-mass dileptons....... LHE
27
17-19 January 2005 5th BMBF-JINR Workshop, Walter F.J. Müller, GSI 27 CBM – Magnet Design (LHE)
28
17-19 January 2005 5th BMBF-JINR Workshop, Walter F.J. Müller, GSI 28 CBM – Fast Detectors (LHE) Joint test beam at GSI in July '04 2 chambers from Dubna
29
17-19 January 2005 5th BMBF-JINR Workshop, Walter F.J. Müller, GSI 29 CBM – Straw based TRD (LPP)
30
17-19 January 2005 5th BMBF-JINR Workshop, Walter F.J. Müller, GSI 30 Observables: Penetrating probes: , , , J / (vector mesons) Strangeness: K, , , , , Open charm: D o, D Hadrons ( p, π), exotica Experimental program of CBM: Systematic investigations: A+A collisions from 8 to 45 (35) AGeV, Z/A=0.5 (0.4) p+A collisions from 8 to 90 GeV p+p collisions from 8 to 90 GeV Beam energies up to 8 AGeV: HADES Large integrated luminosity: High beam intensity and duty cycle, Available for several month per year Detector requirements Large geometrical acceptance good hadron and electron identification excellent vertex resolution high rate capability of detectors, FEE and DAQ e+e- ?
31
17-19 January 2005 5th BMBF-JINR Workshop, Walter F.J. Müller, GSI 31 Stay tuned for Part II by Prof. A. Malakhov
32
17-19 January 2005 5th BMBF-JINR Workshop, Walter F.J. Müller, GSI 32
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.