Download presentation
Presentation is loading. Please wait.
Published byKory Walker Modified over 9 years ago
1
Data Mining Practical Machine Learning Tools and Techniques Chapter 1: What’s it all about? Rodney Nielsen Many of these slides were adapted from: I. H. Witten, E. Frank and M. A. Hall
2
Rodney Nielsen, Human Intelligence& Language Technologies Lab What’s Data Mining All About? Data vs information Data mining and machine learning Structural descriptions ◆ Rules: classification and association ◆ Decision trees Datasets ◆ Weather, contact lens, CPU performance, labour negotiation data, soybean classification Fielded applications ◆ Ranking web pages, loan applications, screening images, load forecasting, machine fault diagnosis, market basket analysis Generalization as search Data mining and ethics
3
Rodney Nielsen, Human Intelligence& Language Technologies Lab Data Vs. Information Society produces huge amounts of data ◆ Sources: business, science, medicine, economics, geography, environment, sports, … Potentially valuable resource Raw data is useless: need techniques to automatically extract information from it ◆ Data: recorded facts ◆ Information: patterns underlying the data
4
Rodney Nielsen, Human Intelligence& Language Technologies Lab Information is Crucial Example 1: in vitro fertilization ◆ Given: embryos described by 60 features ◆ Problem: selection of embryos that will survive ◆ Data: historical records of embryos and outcome Example 2: cow culling ◆ Given: cows described by 700 features ◆ Problem: selection of cows that should be culled ◆ Data: historical records and farmers’ decisions
5
Rodney Nielsen, Human Intelligence& Language Technologies Lab Data Mining Goal: Extracting ◆ implicit, ◆ previously unknown, ◆ potentially useful information from data Needed: programs that detect patterns and regularities in the data Strong patterns good predictions ◆ Problem 1: most patterns are not interesting ◆ Problem 2: patterns may be inexact (or spurious) ◆ Problem 3: data may be garbled or missing
6
Rodney Nielsen, Human Intelligence& Language Technologies Lab Machine Learning Techniques Algorithms for acquiring structural descriptions from examples Structural descriptions represent patterns explicitly ◆ Can be used to predict outcome in new situation ◆ Can be used to understand and explain how prediction is derived ◆ Which is more important? Methods originate from artificial intelligence, statistics, and research on databases, among other disciplines
7
Rodney Nielsen, Human Intelligence& Language Technologies Lab Structural Descriptions Example: if-then rules If tear production rate = reduced then recommendation = none Otherwise, if age = young and astigmatic = no then recommendation = soft …………… HardNormalYesMyopePresbyopic NoneReducedNoHypermetropePre-presbyopic SoftNormalNoHypermetropeYoung NoneReducedNoMyopeYoung Recommended lenses Tear production rate AstigmatismSpectacle prescription Age
8
Rodney Nielsen, Human Intelligence& Language Technologies Lab Can Machines Really Learn? Definitions of “learning” from dictionary To get knowledge of by study, experience, or being taught To become aware by information or from observation To commit to memory To be informed of, ascertain; to receive instruction Difficult to measure Trivial for computers Things learn when they change their behavior in a way that makes them perform better in the future. ● Operational definition: Does a slipper learn?
9
Rodney Nielsen, Human Intelligence& Language Technologies Lab The Weather Problem Conditions for playing a certain game …………… YesFalseNormalMildRainy YesFalseHighHotOvercast NoTrueHighHotSunny NoFalseHighHotSunny PlayWindyHumidityTemperatureOutlook If outlook = sunny and humidity = highthen play = no If outlook = rainy and windy = truethen play = no If outlook = overcastthen play = yes If humidity = normalthen play = yes If none of the abovethen play = yes
10
Rodney Nielsen, Human Intelligence& Language Technologies Lab Classification vs. Association Rules Classification rule: Predicts value of a given attribute (the classification of an example) Association rule: Predicts value of arbitrary attribute (or combination) If outlook = sunny and humidity = high then play = no If temperature = coolthen humidity = normal If humidity = normal and windy = false then play = yes If outlook = sunny and play = no then humidity = high If windy = false and play = no then outlook = sunny and humidity = high
11
Rodney Nielsen, Human Intelligence& Language Technologies Lab Weather Data with Mixed Attributes Some attributes have numeric values …………… YesFalse8075Rainy YesFalse8683Overcast NoTrue9080Sunny NoFalse85 Sunny PlayWindyHumidityTemperatureOutlook If outlook = sunny and humidity > 83then play = no If outlook = rainy and windy = truethen play = no If outlook = overcastthen play = yes If humidity < 85then play = yes If none of the abovethen play = yes
12
Rodney Nielsen, Human Intelligence& Language Technologies Lab Homework Download and familiarize yourself with Weka: http://www.cs.waikato.ac.nz/~ml/weka/downloadi ng.html http://www.cs.waikato.ac.nz/~ml/weka/downloadi ng.html http://www.cs.waikato.ac.nz/~ml/weka/svn.html Read Chapters 1 and 2 of: Data Mining: Practical Machine Learning Tools and Techniques, by Witten, Frank & Hall Available online through UNT library as a pdf http://libproxy.library.unt.edu:2079/science/book/97801 23748560 http://libproxy.library.unt.edu:2079/science/book/97801 23748560
13
Rodney Nielsen, Human Intelligence& Language Technologies Lab Homework Course website:
14
Rodney Nielsen, Human Intelligence& Language Technologies Lab The Contact Lenses Data
15
Rodney Nielsen, Human Intelligence& Language Technologies Lab A Complete and Correct Rule Set If tear production rate = reduced then recommendation = none If age = young and astigmatic = no and tear production rate = normal then recommendation = soft If age = pre-presbyopic and astigmatic = no and tear production rate = normal then recommendation = soft If age = presbyopic and spectacle prescription = myope and astigmatic = no then recommendation = none If spectacle prescription = hypermetrope and astigmatic = no and tear production rate = normal then recommendation = soft If spectacle prescription = myope and astigmatic = yes and tear production rate = normal then recommendation = hard If age young and astigmatic = yes and tear production rate = normal then recommendation = hard If age = pre-presbyopic and spectacle prescription = hypermetrope and astigmatic = yes then recommendation = none If age = presbyopic and spectacle prescription = hypermetrope and astigmatic = yes then recommendation = none
16
Rodney Nielsen, Human Intelligence& Language Technologies Lab A Decision Tree for This Problem
17
Rodney Nielsen, Human Intelligence& Language Technologies Lab Classifying Iris Flowers … … … Iris virginica1.95.12.75.8102 101 52 51 2 1 Iris virginica2.56.03.36.3 Iris versicolor1.54.53.26.4 Iris versicolor1.44.73.27.0 Iris setosa0.21.43.04.9 Iris setosa0.21.43.55.1 TypePetal widthPetal lengthSepal widthSepal length If petal length < 2.45then Iris setosa If sepal width < 2.10then Iris versicolor...
18
Rodney Nielsen, Human Intelligence& Language Technologies Lab Predicting CPU Performance Example: 209 different computer configurations Linear regression function 0 0 32 128 CHMAX 0 0 8 16 CHMIN ChannelsPerformanceCache (Kb) Main memory (Kb) Cycle time (ns) 45040001000480209 67328000512480208 … 26932320008000292 19825660002561251 PRPCACHMMAXMMINMYCT PRP =-55.9 + 0.0489 MYCT + 0.0153 MMIN + 0.0056 MMAX + 0.6410 CACH - 0.2700 CHMIN + 1.480 CHMAX
19
Rodney Nielsen, Human Intelligence& Language Technologies Lab Data From Labor Negotiations
20
Rodney Nielsen, Human Intelligence& Language Technologies Lab Decision Trees for the Labor Data
21
Rodney Nielsen, Human Intelligence& Language Technologies Lab Soybean Classification Diaporthe stem canker19 Diagnosis Normal3Condition Root … Yes2Stem lodging Abnormal2Condition Stem … ?3Leaf spot size Abnormal2Condition Leaf ?5Fruit spots Normal4Condition of fruit pods Fruit … Absent2Mold growth Normal2Condition Seed … Above normal3Precipitation July7Time of occurrence Sample valueNumber of values Attribute
22
Rodney Nielsen, Human Intelligence& Language Technologies Lab The Role of Domain Knowledge In this domain, “leaf condition is normal” implies “leaf malformation is absent”! If leaf condition is normal and stem condition is abnormal and stem cankers is below soil line and canker lesion color is brown then diagnosis is rhizoctonia root rot If leaf malformation is absent and stem condition is abnormal and stem cankers is below soil line and canker lesion color is brown then diagnosis is rhizoctonia root rot
23
Rodney Nielsen, Human Intelligence& Language Technologies Lab Fielded Applications The result of learning—or the learning method itself—is deployed in practical applications ◆ Processing loan applications ◆ Screening images for oil slicks ◆ Electricity supply forecasting ◆ Diagnosis of machine faults ◆ Marketing and sales ◆ Separating crude oil and natural gas ◆ Reducing banding in rotogravure printing ◆ Finding appropriate technicians for telephone faults ◆ Scientific applications: biology, astronomy, chemistry ◆ Automatic selection of TV programs ◆ Monitoring intensive care patients
24
Rodney Nielsen, Human Intelligence& Language Technologies Lab Processing Loan Applications (American Express) Given: questionnaire with financial and personal information Question: should money be lent? Simple statistical method covers 90% of cases Borderline cases referred to loan officers But: 50% of accepted borderline cases defaulted! Solution: reject all borderline cases? ◆ No! Borderline cases are most active customers
25
Rodney Nielsen, Human Intelligence& Language Technologies Lab Enter Machine Learning 1000 training examples of borderline cases 20 attributes: ◆ age ◆ years with current employer ◆ years at current address ◆ years with the bank ◆ other credit cards possessed,… Learned rules: correct on 70% of cases ◆ human experts only 50% Rules could be used to explain decisions to customers
26
Rodney Nielsen, Human Intelligence& Language Technologies Lab Screening Images Given: radar satellite images of coastal waters Problem: detect oil slicks in those images Oil slicks appear as dark regions with changing size and shape Not easy: lookalike dark regions can be caused by weather conditions (e.g. high wind) Expensive process requiring highly trained personnel
27
Rodney Nielsen, Human Intelligence& Language Technologies Lab Enter Machine Learning Extract dark regions from normalized image Attributes: ◆ size of region ◆ shape, area ◆ intensity ◆ sharpness and jaggedness of boundaries ◆ proximity of other regions ◆ info about background Constraints: ◆ Few training examples—oil slicks are rare! ◆ Unbalanced data: most dark regions aren’t slicks ◆ Regions from same image form a batch ◆ Requirement: adjustable false-alarm rate ◆ Precision-Recall tradeoff
28
Rodney Nielsen, Human Intelligence& Language Technologies Lab Load Forecasting Electricity supply companies need forecast of future demand for power Forecasts of min/max load for each hour Significant savings Given: manually constructed load model that assumes “normal” climatic conditions Problem: adjust for weather conditions Static model consist of: ◆ Base load for the year ◆ Load periodicity over the year ◆ Effect of holidays
29
Rodney Nielsen, Human Intelligence& Language Technologies Lab Enter Machine Learning Prediction corrected using “most similar” days Attributes: ◆ Temperature ◆ Humidity ◆ Wind speed ◆ Cloud cover readings ◆ Plus difference between actual load and predicted load Average difference among three “most similar” days added to static model Linear regression coefficients form attribute weights in similarity function
30
Rodney Nielsen, Human Intelligence& Language Technologies Lab Diagnosis of Machine Faults Diagnosis: classical domain of expert systems Given: Fourier analysis of vibrations measured at various points of a device’s mounting Question: which fault is present? Preventative maintenance of electromechanical motors and generators Information very noisy So far: diagnosis by expert/hand-crafted rules
31
Rodney Nielsen, Human Intelligence& Language Technologies Lab Enter Machine Learning Available: 600 faults with expert’s diagnosis ~300 unsatisfactory, rest used for training Attributes augmented by intermediate concepts that embodied causal domain knowledge Expert not satisfied with initial rules because they did not relate to his domain knowledge Further background knowledge resulted in more complex rules that were satisfactory Learned rules outperformed hand-crafted ones
32
Rodney Nielsen, Human Intelligence& Language Technologies Lab Marketing and Sales I Companies precisely record massive amounts of marketing and sales data Applications: ◆ Customer loyalty: identifying customers that are likely to defect by detecting changes in their behavior (e.g. banks/phone companies) ◆ Special offers: identifying profitable customers (e.g. reliable owners of credit cards that need extra money during the holiday season)
33
Rodney Nielsen, Human Intelligence& Language Technologies Lab Marketing and Sales II Market basket analysis ◆ Association techniques find groups of items that tend to occur together in a transaction (used to analyze checkout data) Historical analysis of purchasing patterns Identifying prospective customers ◆ Focusing promotional mailouts (targeted campaigns are cheaper than mass-marketed ones)
34
Rodney Nielsen, Human Intelligence& Language Technologies Lab UNT Where should UNT be using Data Mining and why?
35
Rodney Nielsen, Human Intelligence& Language Technologies Lab The World What ripe opportunities do you see for DM in the world?
36
Rodney Nielsen, Human Intelligence& Language Technologies Lab DM vs. ML vs. Statistics What are the differences and relationships between: Data Mining and Statistics? Data Mining and Machine Learning?
37
Rodney Nielsen, Human Intelligence& Language Technologies Lab Machine Learning and Statistics Historical difference (grossly oversimplified): ◆ Statistics: testing hypotheses ◆ Machine learning: finding the right hypothesis But: huge overlap ◆ Decision trees (C4.5 and CART) ◆ Nearest-neighbor methods Today: perspectives have significant overlap ◆ Many ML algorithms employ statistical techniques Homework: http://stats.stackexchange.com/questions/5026/what-is-the- difference-between-data-mining-statistics-machine-learning-and-ai
38
Rodney Nielsen, Human Intelligence& Language Technologies Lab Generalization as Search Learning = Generalization Interesting Learning => Generalization
39
Rodney Nielsen, Human Intelligence& Language Technologies Lab Generalization as Search Inductive learning: find a concept description that fits the data Example: rule sets as concept description language … continued
40
Rodney Nielsen, Human Intelligence& Language Technologies Lab Example Rules if outlook=sunny and temperature=hot and humidity=high and windy=false then play = no if outlooktemperaturehumiditywindy then play sunnyhothighfalseno if outlook = sunny and humidity = high then play = no play = yes
41
Rodney Nielsen, Human Intelligence& Language Technologies Lab Weather Data Points (Examples) outlooktemperaturehumiditywindyplay sunnyhothighfalseno sunnyhothightrueno overcasthothighfalseyes rainymildhighfalseyes rainycoolnormalfalseyes rainycoolnormaltrueno overcastcoolnormaltrueyes sunnymildhighfalseno sunnycoolnormalfalseyes rainymildnormalfalseyes sunnymildnormaltrueyes overcastmildhightrueyes overcasthotnormalfalseyes rainymildhightrueno
42
Rodney Nielsen, Human Intelligence& Language Technologies Lab Generalization as Search Inductive learning: find a concept description that fits the data Example: rule sets as concept description language ◆ Enormous, but finite, search space … continued
43
Rodney Nielsen, Human Intelligence& Language Technologies Lab Enumerating the Concept Space Search space for weather problem ◆ Number of unique possible rules: ◆ 4 x 4 x 3 x 3 x 2 = 288 possible rules
44
Rodney Nielsen, Human Intelligence& Language Technologies Lab All Possible Rules Rule #s if outlooktemperaturehumiditywindy then play 1sunnyhothighfalseno 2sunnyhothighfalseyes 3sunnyhothightrueno 4sunnyhothightrueyes 5-6sunnyhothigh *... 7-12sunnyhotnormal... 13-18sunnyhot *... 19-36sunnymild... 37-54sunnycool... 55-72sunny *... 73-144overcast... 145-216rainy... 217-288 *... * Match any value = omit feature from the rule
45
Rodney Nielsen, Human Intelligence& Language Technologies Lab Example Rules Rule # if outlooktemperaturehumiditywindy then play... 59sunny * high * no... 288 **** yes 59: if outlook = sunny and humidity = highthen play = no 288: play = yes
46
Rodney Nielsen, Human Intelligence& Language Technologies Lab Enumerating the Concept Space Search space for weather problem ◆ Number of unique possible rules: ◆ 4 x 4 x 3 x 3 x 2 = 288 possible rules ◆ Do we have 288 total possible solutions/hypotheses? ◆ Do we have 288 total possible concepts?
47
Rodney Nielsen, Human Intelligence& Language Technologies Lab The Concept Space A Concept is (or is defined by): A set of rules E.g., rules: {59, 144, 213, 282} The Concept Space is (or is defined by): All the possible sets of rules if outlook=sunny and temperature=hot and humidity=high and windy=false then play = no if outlook = sunny and humidity = high then play = no play = yes
48
Rodney Nielsen, Human Intelligence& Language Technologies Lab Enumerating the Concept Space Search space for weather problem ◆ Number of unique possible rules: ◆ 4 x 4 x 3 x 3 x 2 = 288 possible rules ◆ Number of unique possible rule sets?
49
Rodney Nielsen, Human Intelligence& Language Technologies Lab Enumerate Concept Space {1} {2} … {288} {1, 2} {1, 3} … {287, 288} {1, 2, 3} … {1, 2, …, 288}
50
Rodney Nielsen, Human Intelligence& Language Technologies Lab Enumerating the Concept Space Search space for weather problem ◆ Number of unique possible rules: ◆ 4 x 4 x 3 x 3 x 2 = 288 possible rules ◆ Number of unique possible rule sets: ◆ Simplifying assumption: ◆ Each rule set contains at most 14 rules ◆ There are around 2.7x10 34 possible rule “sets” ◆ I.e., around 2.7x10 34 possible hypotheses in the search space
51
Rodney Nielsen, Human Intelligence& Language Technologies Lab Generalization as Search Inductive learning: find a concept description that fits the data Example: rule sets as concept description language ◆ Enormous, but finite, search space Simple solution: ◆ Enumerate the concept space (2.7x10 34 rule “sets”) ◆ Eliminate descriptions that do not fit examples ◆ Surviving descriptions contain target concept
52
Rodney Nielsen, Human Intelligence& Language Technologies Lab Enumerate All Possible Rules Rule #s if outlooktemperaturehumiditywindy then play 1sunnyhothighfalseno 2sunnyhothighfalseyes 3sunnyhothightrueno 4sunnyhothightrueyes 5-6sunnyhothigh *... 7-12sunnyhotnormal... 13-18sunnyhot *... 19-36sunnymild... 37-54sunnycool... 55-72sunny *... 73-144overcast... 145-216rainy... 217-288 *...
53
Rodney Nielsen, Human Intelligence& Language Technologies Lab Enumerate Concept Space {1} {2} … {288} {1, 2} {1, 3} … {287, 288} … {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15} … {275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288} ~2.7x10 34 rule “sets”
54
Rodney Nielsen, Human Intelligence& Language Technologies Lab Generalization as Search Inductive learning: find a concept description that fits the data Example: rule sets as concept description language ◆ Enormous, but finite, search space Simple solution: ◆ Enumerate the concept space (2.7x10 34 rule “sets”) ◆ Eliminate concept descriptions that do not fit examples ◆ Surviving descriptions contain target concept
55
Rodney Nielsen, Human Intelligence& Language Technologies Lab Eliminate Rules Rule #s if outlooktemperaturehumiditywindy then play 1sunnyhothighfalseno 2sunnyhothighfalseyes 3sunnyhothightrueno 4sunnyhothightrueyes 5-6sunnyhothigh *... 7-12sunnyhotnormal... 13-18sunnyhot *... 19-36sunnymild... 37-54sunnycool... 55-72sunny *... 73-144overcast... 145-216rainy... 217-288 *...
56
Rodney Nielsen, Human Intelligence& Language Technologies Lab Eliminate Concepts {1} {2} … {288} {1, 2} {1, 3} … {287, 288} … there are some valid sets in here {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15} … and in here {275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288} ~2.7x10 34 rule “sets”
57
Rodney Nielsen, Human Intelligence& Language Technologies Lab Generalization as Search Inductive learning: find a concept description that fits the data Example: rule sets as concept description language ◆ Enormous, but finite, search space Simple solution: ◆ Enumerate the concept space (2.7x10 34 rule “sets”) ◆ Eliminate descriptions that do not fit examples ◆ Surviving descriptions contain target concept ◆ This would rarely be practical
58
Rodney Nielsen, Human Intelligence& Language Technologies Lab Enumerating the Concept Space Other practical problems: ◆ More than one description may survive ◆ No description may survive Language is unable to describe target concept or data contains noise Another view of generalization as search: hill-climbing in description space according to pre- specified matching criterion ◆ Most practical algorithms use heuristic search that cannot guarantee an optimum solution
59
Rodney Nielsen, Human Intelligence& Language Technologies Lab Bias Important decisions in learning systems: ◆ Concept description language ◆ Order in which the space is searched ◆ Way that overfitting to the particular training data is avoided These form the “bias” of the search: ◆ Language bias ◆ Search bias ◆ Overfitting-avoidance bias
60
Rodney Nielsen, Human Intelligence& Language Technologies Lab Bias What is meant by bias in machine learning?
61
Rodney Nielsen, Human Intelligence& Language Technologies Lab Language Bias Important question: ◆ Is the concept description language universal or does it restrict what can be learned? A universal language can express arbitrary subsets of examples If language includes logical or (“disjunction”), it is universal Example: rule sets Domain knowledge can be used to exclude some concept descriptions a priori from the search
62
Rodney Nielsen, Human Intelligence& Language Technologies Lab Overfitting-Avoidance Bias Can be seen as a form of search bias Modified evaluation criterion ◆ E.g. balancing simplicity and number of errors Modified search strategy ◆ E.g. pruning (simplifying a description) Pre-pruning: stops at a simple description before search proceeds to an overly complex one Post-pruning: generates a complex description first and simplifies it afterwards
63
Rodney Nielsen, Human Intelligence& Language Technologies Lab Search Bias Search heuristic ◆ “Greedy” search: performing the best single step ◆ “Beam search”: keeping several alternatives ◆ … Direction of search ◆ General-to-specific E.g. specializing a rule by adding conditions ◆ Specific-to-general E.g. generalizing an individual instance into a rule
64
Rodney Nielsen, Human Intelligence& Language Technologies Lab Direction of Search What is the difference between the two directions of search, which is better, and why?
65
Rodney Nielsen, Human Intelligence& Language Technologies Lab The Examples outlooktemperaturehumiditywindy play sunnyhothighfalseno sunnyhothightrueno overcasthothighfalseyes rainymildhighfalseyes rainycoolnormalfalseyes rainycoolnormaltrueno overcastcoolnormaltrueyes sunnymildhighfalseno sunnycoolnormalfalseyes rainymildnormalfalseyes sunnymildnormaltrueyes overcastmildhightrueyes overcasthotnormalfalseyes rainymildhightrueno
66
Rodney Nielsen, Human Intelligence& Language Technologies Lab Examples Rules Rule #s if outlooktemperaturehumiditywindy then play 1sunnyhothighfalseno 2sunnyhothightrueno 3overcasthothighfalseyes 4rainymildhighfalseyes 5rainycoolnormalfalseyes 6rainycoolnormaltrueno 7overcastcoolnormaltrueyes 8sunnymildhighfalseno 9sunnycoolnormalfalseyes 10rainymildnormalfalseyes 11sunnymildnormaltrueyes 12overcastmildhightrueyes 13overcasthotnormalfalseyes 14rainymildhightrueno
67
Rodney Nielsen, Human Intelligence& Language Technologies Lab Otherwise… Rule #s if outlooktemperaturehumiditywindy then play 1sunnyhothighfalseno 2sunnyhothightrueno 3overcasthothighfalseyes 4rainymildhighfalseyes 5rainycoolnormalfalseyes 6rainycoolnormaltrueno 7overcastcoolnormaltrueyes 8sunnymildhighfalseno 9sunnycoolnormalfalseyes 10rainymildnormalfalseyes 11sunnymildnormaltrueyes 12overcastmildhightrueyes 13overcasthotnormalfalseyes 14rainymildhightrueno 15 **** yes
68
Rodney Nielsen, Human Intelligence& Language Technologies Lab Specific General Rule #s if outlooktemperaturehumiditywindy then play 1sunnyhothighfalseno 2sunnyhothightrueno 3overcasthothighfalseyes 4rainymildhighfalseyes 5rainycoolnormalfalseyes 6rainycoolnormaltrueno 7overcastcoolnormaltrueyes 8sunnymildhighfalseno 9sunnycoolnormalfalseyes 10rainymildnormalfalseyes 11sunnymildnormaltrueyes 12overcastmildhightrueyes 13overcasthotnormalfalseyes 14rainymildhightrueno 15 **** yes
69
Rodney Nielsen, Human Intelligence& Language Technologies Lab Specific General Rule #s if outlooktemperaturehumiditywindy then play 1’sunnyhothigh * no 3overcasthothighfalseyes 4rainymildhighfalseyes 5rainycoolnormalfalseyes 6rainycoolnormaltrueno 7overcastcoolnormaltrueyes 8sunnymildhighfalseno 9sunnycoolnormalfalseyes 10rainymildnormalfalseyes 11sunnymildnormaltrueyes 12overcastmildhightrueyes 13overcasthotnormalfalseyes 14rainymildhightrueno 15 **** yes
70
Rodney Nielsen, Human Intelligence& Language Technologies Lab Specific General Rule #s if outlooktemperaturehumiditywindy then play 1’sunnyhothigh * no 3overcasthothighfalseyes 4rainymildhighfalseyes 5rainycoolnormalfalseyes 6rainycoolnormaltrueno 7overcastcoolnormaltrueyes 8sunnymildhighfalseno 9sunnycoolnormalfalseyes 10rainymildnormalfalseyes 11sunnymildnormaltrueyes 12overcastmildhightrueyes 13overcasthotnormalfalseyes 14rainymildhightrueno 15 **** yes
71
Rodney Nielsen, Human Intelligence& Language Technologies Lab Specific General Rule #s if outlooktemperaturehumiditywindy then play 1’sunnyhothigh * no 2’ rainy ** trueno 3overcasthothighfalseyes 4rainymildhighfalseyes 5rainycoolnormalfalseyes 6rainycoolnormaltrueno 7overcastcoolnormaltrueyes 8sunnymildhighfalseno 9sunnycoolnormalfalseyes 10rainymildnormalfalseyes 11sunnymildnormaltrueyes 12overcastmildhightrueyes 13overcasthotnormalfalseyes 14rainymildhightrueno 15 **** yes
72
Rodney Nielsen, Human Intelligence& Language Technologies Lab Specific General Rule #s if outlooktemperaturehumiditywindy then play 1’sunnyhothigh * no 2’ rainy ** trueno 3overcasthothighfalseyes 4rainymildhighfalseyes 5rainycoolnormalfalseyes 7overcastcoolnormaltrueyes 8sunnymildhighfalseno 9sunnycoolnormalfalseyes 10rainymildnormalfalseyes 11sunnymildnormaltrueyes 12overcastmildhightrueyes 13overcasthotnormalfalseyes 15 **** yes
73
Rodney Nielsen, Human Intelligence& Language Technologies Lab Specific General Rule #s if outlooktemperaturehumiditywindy then play 1”sunny * high * no 2’ rainy ** trueno 3overcasthothighfalseyes 4rainymildhighfalseyes 5rainycoolnormalfalseyes 7overcastcoolnormaltrueyes 8sunnymildhighfalseno 9sunnycoolnormalfalseyes 10rainymildnormalfalseyes 11sunnymildnormaltrueyes 12overcastmildhightrueyes 13overcasthotnormalfalseyes 15 **** yes
74
Rodney Nielsen, Human Intelligence& Language Technologies Lab Specific General Rule #s if outlooktemperaturehumiditywindy then play 1”sunny * high * no 2’ rainy ** trueno 3overcasthothighfalseyes 4rainymildhighfalseyes 5rainycoolnormalfalseyes 7overcastcoolnormaltrueyes 9sunnycoolnormalfalseyes 10rainymildnormalfalseyes 11sunnymildnormaltrueyes 12overcastmildhightrueyes 13overcasthotnormalfalseyes 15 **** yes
75
Rodney Nielsen, Human Intelligence& Language Technologies Lab Specific General Rule #s if outlooktemperaturehumiditywindy then play 1”sunny * high * no 2’ rainy ** trueno 3overcasthothighfalseyes 4rainymildhighfalseyes 5rainycoolnormalfalseyes 7overcastcoolnormaltrueyes 9sunnycoolnormalfalseyes 10rainymildnormalfalseyes 11sunnymildnormaltrueyes 12overcastmildhightrueyes 13overcasthotnormalfalseyes 15 **** yes
76
Rodney Nielsen, Human Intelligence& Language Technologies Lab Specific General Rule #s if outlooktemperaturehumiditywindy then play 1”sunny * high * no 2’ rainy ** trueno 3overcasthothighfalseyes 4rainymildhighfalseyes 5rainycoolnormalfalseyes 7overcastcoolnormaltrueyes 9sunnycoolnormalfalseyes 10rainymildnormalfalseyes 11sunnymildnormaltrueyes 12overcastmildhightrueyes 13overcasthotnormalfalseyes 15 **** yes
77
Rodney Nielsen, Human Intelligence& Language Technologies Lab Specific General Rule #s if outlooktemperaturehumiditywindy then play 1”sunny * high * no 2’ rainy ** trueno 3overcasthothighfalseyes 4rainymildhighfalseyes 5rainycoolnormalfalseyes 7overcastcoolnormaltrueyes 9sunnycoolnormalfalseyes 10rainymildnormalfalseyes 11sunnymildnormaltrueyes 12overcastmildhightrueyes 13overcasthotnormalfalseyes 15 **** yes
78
Rodney Nielsen, Human Intelligence& Language Technologies Lab Specific General Rule #s if outlooktemperaturehumiditywindy then play 1”sunny * high * no 2’ rainy ** trueno 3overcasthothighfalseyes 4rainymildhighfalseyes 5rainycoolnormalfalseyes 7overcastcoolnormaltrueyes 9sunnycoolnormalfalseyes 10rainymildnormalfalseyes 11sunnymildnormaltrueyes 12overcastmildhightrueyes 13overcasthotnormalfalseyes 15 **** yes
79
Rodney Nielsen, Human Intelligence& Language Technologies Lab Specific General Rule #s if outlooktemperaturehumiditywindy then play 1”sunny * high * no 2’ rainy ** trueno 3overcasthothighfalseyes 4rainymildhighfalseyes 5rainycoolnormalfalseyes 7overcastcoolnormaltrueyes 9sunnycoolnormalfalseyes 10rainymildnormalfalseyes 11sunnymildnormaltrueyes 12overcastmildhightrueyes 13overcasthotnormalfalseyes Otherwise**** yes
80
Rodney Nielsen, Human Intelligence& Language Technologies Lab Specific General Rule #s if outlooktemperaturehumiditywindy then play 1”sunny * high * no 2’ rainy ** trueno 3overcasthothighfalseyes 4rainymildhighfalseyes 5rainycoolnormalfalseyes 7overcastcoolnormaltrueyes 9sunnycoolnormalfalseyes 10rainymildnormalfalseyes 11sunnymildnormaltrueyes 12overcastmildhightrueyes 13overcasthotnormalfalseyes Otherwise**** yes
81
Rodney Nielsen, Human Intelligence& Language Technologies Lab Specific General Rule #s if outlooktemperaturehumiditywindy then play 1”sunny * high * no 2’ rainy ** trueno Otherwise**** yes
82
Rodney Nielsen, Human Intelligence& Language Technologies Lab Search Bias Search heuristic ◆ “Greedy” search: performing the best single step ◆ “Beam search”: keeping several alternatives ◆ … Direction of search ◆ General-to-specific E.g. specializing a rule by adding conditions ◆ Specific-to-general E.g. generalizing an individual instance into a rule
83
Rodney Nielsen, Human Intelligence& Language Technologies Lab General Specific Rule #s if outlooktemperaturehumiditywindy then play 1****yes sunnyhothighfalseno sunnyhothightrueno sunnymildhighfalseno rainymildhightrueno rainycoolnormaltrueno sunnymildnormaltrueyes sunnycoolnormalfalseyes overcasthotnormalfalseyes overcasthothighfalseyes overcastmildhightrueyes overcastcoolnormaltrueyes rainymildnormalfalseyes rainymildhighfalseyes rainycoolnormalfalseyes Examples
84
Rodney Nielsen, Human Intelligence& Language Technologies Lab General Specific Rule #s if outlooktemperaturehumiditywindy then play 1sunny***yes sunnyhothighfalseno sunnyhothightrueno sunnymildhighfalseno rainymildhightrueno rainycoolnormaltrueno sunnymildnormaltrueyes sunnycoolnormalfalseyes overcasthotnormalfalseyes overcasthothighfalseyes overcastmildhightrueyes overcastcoolnormaltrueyes rainymildnormalfalseyes rainymildhighfalseyes rainycoolnormalfalseyes Examples
85
Rodney Nielsen, Human Intelligence& Language Technologies Lab General Specific Rule #s if outlooktemperaturehumiditywindy then play 1rainy***yes sunnyhothighfalseno sunnyhothightrueno sunnymildhighfalseno rainymildhightrueno rainycoolnormaltrueno sunnymildnormaltrueyes sunnycoolnormalfalseyes overcasthotnormalfalseyes overcasthothighfalseyes overcastmildhightrueyes overcastcoolnormaltrueyes rainymildnormalfalseyes rainymildhighfalseyes rainycoolnormalfalseyes Examples
86
Rodney Nielsen, Human Intelligence& Language Technologies Lab General Specific Rule #s if outlooktemperaturehumiditywindy then play # Exs 1overcast***yes4 sunnyhothighfalseno sunnyhothightrueno sunnymildhighfalseno rainymildhightrueno rainycoolnormaltrueno sunnymildnormaltrueyes sunnycoolnormalfalseyes overcasthotnormalfalseyes overcasthothighfalseyes overcastmildhightrueyes overcastcoolnormaltrueyes rainymildnormalfalseyes rainymildhighfalseyes rainycoolnormalfalseyes Examples
87
Rodney Nielsen, Human Intelligence& Language Technologies Lab General Specific Rule #s if outlooktemperaturehumiditywindy then play # Exs 1overcast***yes4 sunnyhothighfalseno sunnyhothightrueno sunnymildhighfalseno rainymildhightrueno rainycoolnormaltrueno sunnymildnormaltrueyes sunnycoolnormalfalseyes rainymildnormalfalseyes rainymildhighfalseyes rainycoolnormalfalseyes Examples
88
Rodney Nielsen, Human Intelligence& Language Technologies Lab General Specific Rule #s if outlooktemperaturehumiditywindy then play # Exs 1overcast***yes4 2*hot**yes sunnyhothighfalseno sunnyhothightrueno sunnymildhighfalseno rainymildhightrueno rainycoolnormaltrueno sunnymildnormaltrueyes sunnycoolnormalfalseyes rainymildnormalfalseyes rainymildhighfalseyes rainycoolnormalfalseyes Examples
89
Rodney Nielsen, Human Intelligence& Language Technologies Lab General Specific Rule #s if outlooktemperaturehumiditywindy then play # Exs 1overcast***yes4 2*mild**yes sunnyhothighfalseno sunnyhothightrueno sunnymildhighfalseno rainymildhightrueno rainycoolnormaltrueno sunnymildnormaltrueyes sunnycoolnormalfalseyes rainymildnormalfalseyes rainymildhighfalseyes rainycoolnormalfalseyes Examples
90
Rodney Nielsen, Human Intelligence& Language Technologies Lab General Specific Rule #s if outlooktemperaturehumiditywindy then play # Exs 1overcast***yes4 2*cool**yes sunnyhothighfalseno sunnyhothightrueno sunnymildhighfalseno rainymildhightrueno rainycoolnormaltrueno sunnymildnormaltrueyes sunnycoolnormalfalseyes rainymildnormalfalseyes rainymildhighfalseyes rainycoolnormalfalseyes Examples
91
Rodney Nielsen, Human Intelligence& Language Technologies Lab General Specific Rule #s if outlooktemperaturehumiditywindy then play # Exs 1overcast***yes4 2**high*yes sunnyhothighfalseno sunnyhothightrueno sunnymildhighfalseno rainymildhightrueno rainycoolnormaltrueno sunnymildnormaltrueyes sunnycoolnormalfalseyes rainymildnormalfalseyes rainymildhighfalseyes rainycoolnormalfalseyes Examples
92
Rodney Nielsen, Human Intelligence& Language Technologies Lab General Specific Rule #s if outlooktemperaturehumiditywindy then play # Exs 1overcast***yes4 2**normal*yes sunnyhothighfalseno sunnyhothightrueno sunnymildhighfalseno rainymildhightrueno rainycoolnormaltrueno sunnymildnormaltrueyes sunnycoolnormalfalseyes rainymildnormalfalseyes rainymildhighfalseyes rainycoolnormalfalseyes Examples
93
Rodney Nielsen, Human Intelligence& Language Technologies Lab General Specific Rule #s if outlooktemperaturehumiditywindy then play # Exs 1overcast***yes4 2***falseyes sunnyhothighfalseno sunnyhothightrueno sunnymildhighfalseno rainymildhightrueno rainycoolnormaltrueno sunnymildnormaltrueyes sunnycoolnormalfalseyes rainymildnormalfalseyes rainymildhighfalseyes rainycoolnormalfalseyes Examples
94
Rodney Nielsen, Human Intelligence& Language Technologies Lab General Specific Rule #s if outlooktemperaturehumiditywindy then play # Exs 1overcast***yes4 2***trueyes sunnyhothighfalseno sunnyhothightrueno sunnymildhighfalseno rainymildhightrueno rainycoolnormaltrueno sunnymildnormaltrueyes sunnycoolnormalfalseyes rainymildnormalfalseyes rainymildhighfalseyes rainycoolnormalfalseyes Examples
95
Rodney Nielsen, Human Intelligence& Language Technologies Lab General Specific Rule #s if outlooktemperaturehumiditywindy then play # Exs 1overcast***yes4 2rainy**falseyes3 sunnyhothighfalseno sunnyhothightrueno sunnymildhighfalseno rainymildhightrueno rainycoolnormaltrueno sunnymildnormaltrueyes sunnycoolnormalfalseyes rainymildnormalfalseyes rainymildhighfalseyes rainycoolnormalfalseyes Examples
96
Rodney Nielsen, Human Intelligence& Language Technologies Lab General Specific Rule #s if outlooktemperaturehumiditywindy then play # Exs 1overcast***yes4 2rainy**falseyes3 3sunny*normal*yes2 sunnyhothighfalseno sunnyhothightrueno sunnymildhighfalseno rainymildhightrueno rainycoolnormaltrueno sunnymildnormaltrueyes sunnycoolnormalfalseyes Examples
97
Rodney Nielsen, Human Intelligence& Language Technologies Lab General Specific Rule #s if outlooktemperaturehumiditywindy then play # Exs 1overcast***yes4 2rainy**falseyes3 3sunny*normal*yes2 Otherwise ****no5 sunnyhothighfalseno sunnyhothightrueno sunnymildhighfalseno rainymildhightrueno rainycoolnormaltrueno Examples
98
Rodney Nielsen, Human Intelligence& Language Technologies Lab General Specific Rule #s if outlooktemperaturehumiditywindy then play # Exs 1overcast***yes4 2rainy**falseyes3 3sunny*normal*yes2 Otherwise ****no5 sunnyhothighfalseno sunnyhothightrueno sunnymildhighfalseno rainymildhightrueno rainycoolnormaltrueno Examples
99
Rodney Nielsen, Human Intelligence& Language Technologies Lab General Specific Rule #s if outlooktemperaturehumiditywindy then play # Exs 1overcast***yes4 2rainy**falseyes3 3sunny*normal*yes2 Otherwise ****no5 1: if outlook = overcast then play = yes 2: if outlook = rainy and windy = false then play = yes 3: if outlook = sunny and humidity = normal then play = yes Otherwise, play = no
100
Rodney Nielsen, Human Intelligence& Language Technologies Lab Bias Important decisions in learning systems: ◆ Concept description language ◆ Order in which the space is searched ◆ Way that overfitting to the particular training data is avoided These form the “bias” of the search: ◆ Language bias ◆ Search bias ◆ Overfitting-avoidance bias
101
Rodney Nielsen, Human Intelligence& Language Technologies Lab Data Mining and Ethics I Ethical issues arise in practical applications Anonymizing data is difficult ◆ 85% of Americans can be identified from just zip code, birth date and sex Data mining and discrimination ◆ E.g. loan applications: using some information (e.g. sex, religion, race) is unethical Ethical situation depends on application ◆ E.g. same information ok in medical application Attributes may contain problematic information ◆ E.g. zip code may correlate with race
102
Rodney Nielsen, Human Intelligence& Language Technologies Lab Data Mining and Ethics II Important questions: ◆ Who is permitted access to the data? ◆ For what purpose was the data collected? ◆ What kind of conclusions can be legitimately drawn from it? Caveats must be attached to results Purely statistical arguments are not sufficient! Are resources put to good use?
103
Rodney Nielsen, Human Intelligence& Language Technologies Lab Questions
104
Rodney Nielsen, Human Intelligence& Language Technologies Lab general specific: Search v2 Rule #s if outlooktemperaturehumiditywindy then play 1****no sunnyhothighfalseno sunnyhothightrueno sunnymildhighfalseno rainymildhightrueno rainycoolnormaltrueno sunnymildnormaltrueyes sunnycoolnormalfalseyes overcasthotnormalfalseyes overcasthothighfalseyes overcastmildhightrueyes overcastcoolnormaltrueyes rainymildnormalfalseyes rainymildhighfalseyes rainycoolnormalfalseyes Examples
105
Rodney Nielsen, Human Intelligence& Language Technologies Lab Rule #s if outlooktemperaturehumiditywindy then play 1sunny*high*no 2rainy**trueno Otherwise ****yes sunnyhothighfalseno sunnyhothightrueno sunnymildhighfalseno rainymildhightrueno rainycoolnormaltrueno sunnymildnormaltrueyes sunnycoolnormalfalseyes overcasthotnormalfalseyes overcasthothighfalseyes overcastmildhightrueyes overcastcoolnormaltrueyes rainymildnormalfalseyes rainymildhighfalseyes rainycoolnormalfalseyes Examples general specific: Search v2
106
Rodney Nielsen, Human Intelligence& Language Technologies Lab Rule #s if outlooktemperaturehumiditywindy then play 1sunny*high*no 2rainy**trueno Otherwise ****yes 1: if outlook = sunny and humidity = high then play = no 2: if outlook = rainy and windy = true then play = no Otherwise, play = yes general specific: Search v2
107
Rodney Nielsen, Human Intelligence& Language Technologies Lab Search v1 versus Search v2 T\O sunnyovercastrainy hot mild cool Rule #s if outlooktemperaturehumiditywindy then play # Exs 1overcast***yes4 2rainy**falseyes3 3sunny*normal*yes2 Otherwise ****no5 T\O sunnyovercastrainy hot mild cool T\O sunnyovercastrainy hot mild cool T\O sunnyovercastrainy hot mild cool Humidityhighnormal Windy true false
108
Rodney Nielsen, Human Intelligence& Language Technologies Lab Rule #s if outlooktemperaturehumiditywindy then play 1sunny*high*no 2rainy**trueno Otherwise ****yes Search v1 versus Search v2 T\O sunnyovercastrainy hot mild cool T\O sunnyovercastrainy hot mild cool T\O sunnyovercastrainy hot mild cool T\O sunnyovercastrainy hot mild cool Humidityhigh Windy true false normal
109
Rodney Nielsen, Human Intelligence& Language Technologies Lab Bias Important decisions in learning systems: ◆ Concept description language ◆ Order in which the space is searched ◆ Way that overfitting to the particular training data is avoided These form the “bias” of the search: ◆ Language bias ◆ Search bias ◆ Overfitting-avoidance bias
110
Rodney Nielsen, Human Intelligence& Language Technologies Lab Ross Quinlan Machine learning researcher from 1970’s University of Sydney, Australia 1986 “Induction of decision trees” ML Journal 1993 C4.5: Programs for machine learning. Morgan Kaufmann 199? Started
111
Rodney Nielsen, Human Intelligence& Language Technologies Lab Statisticians Sir Ronald Aylmer Fisher Born: 17 Feb 1890 London, England Died: 29 July 1962 Adelaide, Australia Numerous distinguished contributions to developing the theory and application of statistics for advancing quantitative modelling of vast field of biology Leo Breiman Developed decision trees 1984 Classification and Regression Trees. Wadsworth.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.