Download presentation
Presentation is loading. Please wait.
Published byMelina Burke Modified over 9 years ago
1
Derivation of Invariants by Tensor Methods Tomáš Suk
2
Motivation Invariants to geometric transformations of 2D and 3D images
3
Tensor Calculus Gregorio Ricci, Tullio Levi-Civita, Méthodes de calcul différentiel absolu et leurs applications, Mathematische Annalen (Springer) 54 (1–2): pp. 125–201, March 1900. William Rowan Hamilton, On some extensions of Quaternions, Philosophical Magazine (4th series): vol. vii (1854), pp. 492-499, vol. viii (1854), pp. 125-137, 261-9, vol. ix (1855), pp. 46-51, 280-290.
4
Tensor Calculus David Cyganski, John A. Orr, Object Recognition and Orientation Determination by Tensor Methods, in Advances in Computer Vision and Image Processing, JAI Press, pp. 101—144, 1988. Grigorii Borisovich Gurevich, Osnovy teorii algebraicheskikh invariantov, (OGIZ, Moskva), 1937. Foundations of the Theory of Algebraic Invariants, (Nordhoff, Groningen), 1964.
5
Tensor Calculus Enumeration Sum of products (dot product) Tensor = multidimensional array + rules of multiplication 2 rules: Example: product of 2 vectors Sum of products:
6
Tensor Calculus Example: product of 2 vectors a i b k =c ik Enumeration:
7
Tensor Calculus Example: product of 2 matrices a ij b kl I enumeration, j=k sum of products, l enumeration
8
Einstein Notation Instead of we write other options vectors: matrices:
9
Other Notations Other symbols Penrose graphical notation
10
Tensors in Affine Space Affine transform in 2D Contravariant vector Covariant vector
11
Tensors in Affine Space Mixed tensor Contravariant tensor Covariant tensor
12
Tensors in Affine Space Multiplication Adition
13
Geometric Meaning Point - contravariant vector Angle of straight line – covariant vector Conic section – covariant tensor
14
Properties Symmetric tensor -To two indices -To several indices -To all indices Antisymmetric tensor (skew-symmetric) -To two indices -To several indices -To all indices
15
Other Tensor Operations Symmetrization Alternation (antisymmetrization)
16
Other Tensor Operations Contraction Total contraction → Affine invariant
17
Unit polyvector Completely antisymmetric tensor - covariant n=2: - contravariant Also Levi-Civita symbol
18
Unit polyvector n=3: note: vector cross product n n components n! non-zero
19
Affine Invariants Products with total contraction Using unit polyvectors
20
Example - moments 2D Moment tensor if p indices equals 1 and q indices equals 2 Geometric moment
21
Example - moments Relative oriented contravariant tensor with weight -1
22
Example - moments
23
Example – 3D moments
24
Invariants to other transformations Non-linear transforms Jacobi matrix
25
Invariants to other transformations Projective transform Homogeneous coordinates
26
Rotation Invariants Cartesian tensors Cartesian tensor Affine tensor Orthonormal matrix
27
Cartesian Tensors Rotation invariants by total contraction
28
Rotation Invariants 2D: 3D:
29
Rotation Invariants 2D: 3D:
30
Rotation Invariants 2D: 3D:
31
Alternative Methods Method of geometric primitives Solution of Equations Transformation decomposition System of linear equations for unknown coefficients
32
Alternative Methods Complex moments Normalization 2D: 3D: Transformation decomposition
33
Thank you for your attention
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.