Download presentation
Presentation is loading. Please wait.
Published byJack Basil Young Modified over 9 years ago
1
Backpropagation An efficient way to compute the gradient Hung-yi Lee
2
Review: Notation …… nodes Layer …… Layer nodes …… :output of a neuron :output of a layer : input of activation function : input of activation function for a layer
3
Review: Notation …… : a weight : a bias : a bias for all neurons in a layer : the weights between layers nodes Layer nodes
4
Review: Relations between Layer Outputs …… nodes Layer …… Layer nodes ……
5
Review: Neural Network is a function vector x vector y (to be learned from training examples)
6
Review: Gradient Descent Given training examples: Find a set of parameters θ * minimizing the error function C(θ) We have to compute and
7
Neat Representation is the multiplication of two terms … … … … Layer
8
Neat Representation – First Term is the multiplication of two terms … … … … Layer
9
Neat Representation – First Term … … Layer l-1 … … Layer l If l > 1
10
Neat Representation – First Term If l = 1 … … Input … … Layer 1 If l > 1
11
Neat Representation – Second Term is always the multiplication of two terms … … … … Layer
12
Neat Representation – Second Term … … Layer l-1 … … Layer l … … Layer l+1 …… … … Layer L (output layer) Two Questions: 1. How to compute 2. The relation of and
13
Neat Representation – Second Term Two Questions: 1. How to compute 2. The relation of and … … Layer L (output layer) Depending on the definition of error function
14
Neat Representation – Second Term Two Questions: 1. How to compute 2. The relation of and
15
Neat Representation – Second Term … … Two Questions: 1. How to compute 2. The relation of and … … Layer l … … Layer l+1
16
Neat Representation – Second Term … … Layer l … … Layer l+1 … …
17
Neat Representation – Second Term multiply a constant … … output input new type of neuron … … Layer l … … Layer l+1
18
Neat Representation – Second Term … … Layer l+1 Layer l
19
Neat Representation – Second Term … … Layer l+1 Layer l Compare … … Layer l … … Layer l+1
20
… … Layer L … …… … Layer l+1 Layer l … Layer L-1 … …… Two Questions: 1. How to compute 2. The relation of and
21
Backpropagation Forward Pass Backward Pass … … … … Layer
22
Appendix
24
A reverse network … … Layer L (Output layer) … (formed by new types of neurons) … … … Layer l+1 Layer l … Layer l+2 … …… Two Questions: 1. How to compute 2. The relation of and
25
Review: Gradient descent Start at paramter θ 0 Compute gradient at W 0 : g 0 Move to W 1 = W 0 - μg 0 Compute gradient at W 1 : g 1 Move to W 2 = W 1 – μg 1 Movement Gradient …… θ0θ0 θ1θ1 θ2θ2 θ3θ3 g0g0 g1g1 g2g2 g3g3
26
Neat Representation – First Term …… Layer 1 …… Layer L-1 …… Input
27
Neat Representation – Second Term … … Layer L (output layer) Two Questions: 1. How to compute 2. The relation of and … … Layer L (Output layer)
28
Neat Representation – Second Term Two Questions: 1. How to compute 2. The relation of and … … Layer L (Output layer)
29
Reference https://theclevermachine.wordpress.com/
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.