Download presentation
Presentation is loading. Please wait.
Published byAbigayle Terry Modified over 9 years ago
1
Genetic Approximate Matching of Attributed Relational Graphs Thomas Bärecke¹, Marcin Detyniecki¹, Stefano Berretti² and Alberto Del Bimbo² ¹ Université Pierre et Marie Curie - Paris6 UMR 7606, DAPA, LIP6, Paris, France ² Università degli Studi di Firenze, Dipartimento di Sistemi e Informatica, Florence, Italy
2
T. Bärecke et al. Genetic Approximate Matching of ARGs 2 Motivation 1/2 Frontal Neutral expression
3
T. Bärecke et al. Genetic Approximate Matching of ARGs 3 Motivation 2/2
4
T. Bärecke et al. Genetic Approximate Matching of ARGs 4 Outline EC Subgraph Isomorphism Genetic Approach Encoding Crossover Local search Combination with tree search Results Conclusions and Future Work
5
T. Bärecke et al. Genetic Approximate Matching of ARGs 5 EC (Sub-)Graph Isomorphism No known optimal and efficient algorithm Genetic algorithms “Parallel” exploration of large non-continuous search spaces No perfect exploitation Adaptive stop criterion Solution quality Elapsed time Good solutions in reasonable time Optimal algorithms Exponential complexity Max. 15 vertices
6
T. Bärecke et al. Genetic Approximate Matching of ARGs 6 GA - Encoding 1 3 42 1 2 43 5 5 14251425 1234512345 12341234 3 3
7
T. Bärecke et al. Genetic Approximate Matching of ARGs 7 GA - Crossover Fitness change depends on all other elementary mappings Strict position-based crossover (PBX) 1 3 42 1 3 42
8
T. Bärecke et al. Genetic Approximate Matching of ARGs 8 Strict position-based crossover Create position list and shuffle it Uniformly select crossover points Create children In case of collision place in alternative place Fill in missing values 1342513425 4123541235 1234512345 1423514235 2341523415 3152431524 2154321543 4253142531 XxxXxx 41354135 13251325
9
T. Bärecke et al. Genetic Approximate Matching of ARGs 9 GA – Local Search Neighborhood N Fitness evaluation of the neighborhood
10
T. Bärecke et al. Genetic Approximate Matching of ARGs 10 GA – other parameters NameValue Tournament size2 Termination10 Crossover probability0.9 Mutation probability0 2-opt probability1 Population size100 UPMX ratio0.33 Elitism1
11
T. Bärecke et al. Genetic Approximate Matching of ARGs 11 Combining GA with A* … … GA … …
12
T. Bärecke et al. Genetic Approximate Matching of ARGs 12 Outline EC Subgraph Isomorphism Genetic Approach Results Evolution Precision Run time Combined method Conclusions and Future Work
13
T. Bärecke et al. Genetic Approximate Matching of ARGs 13 Evolution Process False MappingsFitness
14
T. Bärecke et al. Genetic Approximate Matching of ARGs 14 Diversity
15
T. Bärecke et al. Genetic Approximate Matching of ARGs 15 Precision – Crossover 1/2 PBXPMX
16
T. Bärecke et al. Genetic Approximate Matching of ARGs 16 Precision – Crossover 2/2 PBXUPMX
17
T. Bärecke et al. Genetic Approximate Matching of ARGs 17 Results - Runtime Graph size Noise (Size 50)
18
T. Bärecke et al. Genetic Approximate Matching of ARGs 18 Combined results
19
T. Bärecke et al. Genetic Approximate Matching of ARGs 19 Conclusions Permutation based Genetic Algorithm Robust for Subgraph Matching Crossover operator Local search Solution candidate at any time Combination of exact and approximate methods
20
T. Bärecke et al. Genetic Approximate Matching of ARGs 20 Future Work Real world data! Allow more graph edit operations Better local improvement heuristic Fewer and optimal parameters Comparison with cycle crossover
21
Thanks for your attention
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.