Download presentation
Presentation is loading. Please wait.
Published byCynthia Holland Modified over 9 years ago
1
Introduction to Web ScienceSlide 1 of 51 http://west.uni-koblenz.de What turns an area into a science? Why is it „Web Science“ and not „Web practice“ what we try to learn/teach/research here?
2
Web Science & Technologies University of Koblenz ▪ Landau, Germany Web Observatory Steffen Staab
3
Introduction to Web ScienceSlide 3 of 51 http://west.uni-koblenz.de Doing Science on the Web - Methods Observations Web Data Snapshot –Google Cache –Your own crawl Diachronous –Internet Archive
4
Introduction to Web ScienceSlide 4 of 51 http://west.uni-koblenz.de Wayback machine
5
Introduction to Web ScienceSlide 5 of 51 http://west.uni-koblenz.de Web Graph Slides by Maren van Stehen Full slide deck and free book on „Graph theory and Complex Networks“ available from http://www.distributed-systems.net/gtcn
6
Introduction to Web ScienceSlide 6 of 51 http://west.uni-koblenz.de
7
Introduction to Web ScienceSlide 7 of 51 http://west.uni-koblenz.de
8
Introduction to Web ScienceSlide 8 of 51 http://west.uni-koblenz.de
9
Introduction to Web ScienceSlide 9 of 51 http://west.uni-koblenz.de
10
Introduction to Web ScienceSlide 10 of 51 http://west.uni-koblenz.de
11
Introduction to Web ScienceSlide 11 of 51 http://west.uni-koblenz.de
12
Introduction to Web ScienceSlide 12 of 51 http://west.uni-koblenz.de
13
Introduction to Web ScienceSlide 13 of 51 http://west.uni-koblenz.de
14
Introduction to Web ScienceSlide 14 of 51 http://west.uni-koblenz.de
15
Introduction to Web ScienceSlide 15 of 51 http://west.uni-koblenz.de
16
Introduction to Web ScienceSlide 16 of 51 http://west.uni-koblenz.de
17
Introduction to Web ScienceSlide 17 of 51 http://west.uni-koblenz.de
18
Introduction to Web ScienceSlide 18 of 51 http://west.uni-koblenz.de
19
Introduction to Web ScienceSlide 19 of 51 http://west.uni-koblenz.de
20
Introduction to Web ScienceSlide 20 of 51 http://west.uni-koblenz.de
21
Introduction to Web ScienceSlide 21 of 51 http://west.uni-koblenz.de
22
Introduction to Web ScienceSlide 22 of 51 http://west.uni-koblenz.de
23
Introduction to Web ScienceSlide 23 of 51 http://west.uni-koblenz.de
24
Introduction to Web ScienceSlide 24 of 51 http://west.uni-koblenz.de
25
Introduction to Web ScienceSlide 25 of 51 http://west.uni-koblenz.de
26
Introduction to Web ScienceSlide 26 of 51 http://west.uni-koblenz.de
27
Introduction to Web ScienceSlide 27 of 51 http://west.uni-koblenz.de
28
Introduction to Web ScienceSlide 28 of 51 http://west.uni-koblenz.de
29
Introduction to Web ScienceSlide 29 of 51 http://west.uni-koblenz.de
30
Introduction to Web ScienceSlide 30 of 51 http://west.uni-koblenz.de
31
Introduction to Web ScienceSlide 31 of 51 http://west.uni-koblenz.de
32
Introduction to Web ScienceSlide 32 of 51 http://west.uni-koblenz.de
33
Introduction to Web ScienceSlide 33 of 51 http://west.uni-koblenz.de
34
Introduction to Web ScienceSlide 34 of 51 http://west.uni-koblenz.de
35
Introduction to Web ScienceSlide 35 of 51 http://west.uni-koblenz.de Issues with crawling Issues: duplicate pages (available under different URLs) deep web pages temporarily available pages closed / semi-public pages Restricted content no robot Republishing Even Facebook-shares may lead to written warnings („Abmahnung“) with fees
36
Introduction to Web ScienceSlide 36 of 51 http://west.uni-koblenz.de OTHER OBSERVATION EFFORTS
37
Introduction to Web ScienceSlide 37 of 51 http://west.uni-koblenz.de
38
Introduction to Web ScienceSlide 38 of 51 http://west.uni-koblenz.de
39
Introduction to Web ScienceSlide 39 of 51 http://west.uni-koblenz.de Linked Open Data Cloud
40
Introduction to Web ScienceSlide 40 of 51 http://west.uni-koblenz.de
41
Web Science & Technologies University of Koblenz ▪ Landau, Germany Observing Users Steffen Staab
42
Introduction to Web ScienceSlide 42 of 51 http://west.uni-koblenz.de Doing Science on the Web - Methods Observations Web Data Snapshot –Google Cache –Your own crawl Diachronous –Internet Archive User Data Web Site Operator
43
Introduction to Web ScienceSlide 43 of 51 http://west.uni-koblenz.de Server Logs Apache Common Log Format Example: 127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700] "GET /apache_pb.gif HTTP/1.0" 200 2326 127.0.0.1 (%h) IP address of the client (remote host) which made the request to the server (may be proxy!). - (%l) identity of client not available frank (%u) userid of the person requesting the document as determined by HTTP authentication
44
Introduction to Web ScienceSlide 44 of 51 http://west.uni-koblenz.de Server Logs Apache Common Log Format Example: 127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700] "GET /apache_pb.gif HTTP/1.0" 200 2326 [10/Oct/2000:13:55:36 -0700] (%t) The time that the request was received. "GET /apache_pb.gif HTTP/1.0" (\"%r\“) The request line from the client 200 (%>s) status code that the server sends back to the client. 2326 (%b) size of the object returned to the client
45
Introduction to Web ScienceSlide 45 of 51 http://west.uni-koblenz.de Server Logs Apache Combined Log Format Example: 127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700] "GET /apache_pb.gif HTTP/1.0" 200 2326 "http://www.example.com/start.html" "Mozilla/4.08 [en] (Win98; I ;Nav)“ The additional fields are: "http://www.example.com/start.html" (\"%{Referer}i\“) The "Referer" (sic) HTTP request header. "Mozilla/4.08 [en] (Win98; I ;Nav)" (\"%{User-agent}i\“) The User-Agent HTTP request header. Identifying information that the client browser reports about itself.
46
Introduction to Web ScienceSlide 46 of 51 http://west.uni-koblenz.de AOL Search Query Log
47
Introduction to Web ScienceSlide 47 of 51 http://west.uni-koblenz.de
48
Introduction to Web ScienceSlide 48 of 51 http://west.uni-koblenz.de AOL Query Log Mirrors
49
Introduction to Web ScienceSlide 49 of 51 http://west.uni-koblenz.de Doing Science on the Web - Methods Observations Web Data Snapshot –Google Cache –Your own crawl Diachronous –Internet Archive User Data Web Site Operator User Experiments (cf. Indexing quality)
50
Introduction to Web ScienceSlide 50 of 51 http://west.uni-koblenz.de Current Research Challenge Web Observatory Analogy to Virtual Observatories What should it include?
51
Web Science & Technologies University of Koblenz ▪ Landau, Germany Predicting Behaviour Steffen Staab
52
Introduction to Web ScienceSlide 52 of 51 http://west.uni-koblenz.de Example problems of predicting people behavior Politics Rules and laws Social welfare Economics Buying behavior Unemployment Social science (in a more narrow sense) birthrates
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.