Download presentation
Presentation is loading. Please wait.
Published byLily Potter Modified over 9 years ago
1
J.B. Natowitz
2
Correlations – Cluster Formation Bose Condensates Efimov States Superfluidity Perfect Liquid? Perfect Gas ? Few Body Syst.Suppl. 14 (2003) 361-366 Eur.Phys.J. A22 (2004) 261-269
3
The Symmetry Energy Problem Constraining the density dependence of the symmetry energy is a complex problem- The Nuclei Always Solve the Problem Exactly For Us There is always a model dependence Requires close synergy between theorists and experimentalists
4
While low density situation would appear to be easier to constrain- cluster formation changes the medium (leads to additional complexity opportunity)
5
Relativistic Equation of State of Nuclear Matter for Supernova and Neutron Star H.Shen, H.Toki, K. Oyamatsu and K. Sumiyoshi Nucl.Phys. A637 (1998) 435- 450 Cluster Formation and The Virial Equation of State of Low-Density Nuclear Matter C.J. Horowitz and A. Schwenk Nucl. Phys. A776 (2006) 55-79 Cluster Formation and The Equation of State of Low-Density Nuclear Matter
6
Data- Kowalski et al., Phys. Rev. C, 75 014601 (2007) Calculation -Private Communication – O’Connor, Schwenk, Horowitz 2008
7
C. J. Horowitz and A. Schwenk nucl-th/0507033 Calculation -Private Communication – O’Connor, Schwenk, Horowitz 2008 What is the composition, EOS and neutrino response of nuclear matter near the neutrinosphere?
9
Light Charged Particle Emission Studies p + 112Sn and 124Sn d + 112Sn and 124Sn 3He + 112Sn and 124Sn 4He + 112Sn and 124Sn 10B + 112Sn and 124Sn 20Ne + 112Sn and 124Sn 40Ar + 112Sn and 124Sn 64Zn+ 112Sn and 124Sn Projectile Energy - 47A MeV NIMROD 4 Pi Charged Particles 4 Pi Neutrons Thesis – L. Qin TAMU- 2008 Reaction System List
10
Velocity Plots Light Charged Particles TLF NN Experiment From Fitting Velocity Plot Protons 40 Ar+ 124 Sn PLF V parallel V perpendicular NN Sum of Source Fits Sampling the GAS-early emission faster particles Sampling the Liquid – late emission Evaporation-like
11
F sym ═ α T / {(4)[(Z/A) 2 1 – (Z/A) 2 2 ]} lAB LIQUID GAS Reaction Tomography
12
ISOSCALING ANALYSIS TRANSPORT CALCULATIONS For Us - Antisymmetrized Molecular Dynamics - ONO Constrained Molecular Dynamics - Bonasera NUCLEAR MATTER CALCULATIONS Beth-Uhlenbeck Cluster Mean Field Approach- Roepke Tsang et al. There is always a model dependence
14
“The Quantum Nature of a Nuclear Phase Transition. A. Bonasera,Z. Chen, R. Wada, K. Hagel, J. B. Natowitz, P. Sahu, L. Qin, S. Kowalski, Th. Keutgen, T. Materna,T. Nakagawa, “ Physical Review Letters, 101. 122702 (2008)
15
L.Qin et al. In Progress Data - Surface, T Corrected LIQUID
16
K. Hagel et al. Phys. ReV. C 62 034607 (2000) J.B. Natowitz et al., Phys.Rev. C 66 031601 (2002) Average Density Determination Coalescence Model Non-Dissipative Analyses Expanding Fermi Gas Model 47A MeV LIQUID REGION
17
Clusterization in Very Low Density Nuclear Matter PRC 75, 014601 (2007)
18
ρ n = 0.0062 x 10 36 T 3/2 exp[- 20.6/T] Y( 4 He)/ Y( 3 He) fm -3 ρ p = 0.0062 x 10 36 T 3/2 exp[ -19.8/T] Y( 4 He)/ Y( 3 H) fm -3 ρ nucl tot = ρ p + ρ n + 2 ρ d + 3 ρ t + 3 ρ 3He + 4 ρ α Density LOW DENSITY CHEMICAL EQUILIBRIUM MODEL(Albergo) Temperature T HHe = 14.3/ [ln (1.59R)] [ Y d ] [ Y 4 He ] [ Y t ] [ Y 3 He ] [ Y t ] [ Y 3 He ] LCP Isoscaling Analyses and Symmetry Energy R =
19
Note: Same at low density Rho LE ~.005 fm -3 M. Beyer et al. nucl-th/0310055 Light Clusters in Nuclear Matter of Finite Temperature
20
K, fm -1 Binding Energy, MeV Medium Modifications - Gerd Roepke et al. Work in Progress Free B.E.
22
Alpha Mass Fraction Density nuc/fm 3 Virial (no A=3) T = 5 A=3 Included No Medium Effects Medium Effects No Additional Momentum of cluster relative to the medium
23
Temperature Corrections Surface Corrections
24
GAS LIQUID L.Qin et al. In Preparation
25
Virial Orig T=5 Density nuc/fm 3 Alpha Mass Fraction
26
K, fm -1 Binding Energy, MeV Why Mott Point Not Seen? Effect of Momentum Relative to the Medium ? Free B.E.
27
Isoscaling Evolution IMFs were measured by a Si quadrant telescope, backed by four CsI detectors (3cm) at 20°. The Si telescope consisted of four 5cm x 5cm area detectors, having thicknesses 129µm+300µm+1000µm+1000µm (021705 run) 61µm+300µm+1000µm+1000µm (040805 run &060605 run) Fig. 1 CsI detectorsFig. 3 Demon detectors (right)Fig. 2 Demon detectors (left) Z. Chen, R. Wada, M. Huang et al ---in Progress See Talk of Z. Chen
28
(1)021705 40 AMeV 64 Zn beam on 58 Ni, 64 Ni, 112 Sn, 124 Sn, 197 Au targets (2)040805 40 AMeV 64 Zn beam on 112 Sn target 40 AMeV 70 Zn beam on 58 Ni, 64 Ni, 112 Sn, 124 Sn, 197 Au, 232 Th targets (3) 060605 40 AMeV 64 Ni beam on 58 Ni, 64 Ni, 112 Sn, 124 Sn, 197 Au, 232 Th targets Reaction systems studied
29
Isotope resolution Z=4 Z=6 Z=8 Z=10 Fig. 4 Isotopes for Z=3 to 12 have been clearly identified in all Si-Si combinations Fig. 5 Linearized Z distribution
30
Isoscaling Evolution from AMD. Y( 64 Ni+ 124 Sn)/ Y( 64 Zn+ 112 Sn) Time=2000 fm/cTime=300 fm/c
31
Fragment –Particle Correlations to Explore Effects of Secondary Decay S. Hudan et al.
33
40 MeV/u 64 Zn + 112 Sn Z. Chen, R. Wada, M. Rodrigues et al. Work in Progress
34
M. Barbui, A. Bonasera. C. Bottosso, M. Cinausero, Z. Chen, Y. El Masri, D. Fabris, K. Hagel, S. Kimura, T. Keutgen, S. Kowalski, M. Lunardon, Z. Majka, S. Moretto, G. Nebbia, J. Natowitz, A. Ono, L. Qin, S. Pesente, G. Prete, V. Rizzi, M. Rodrigues, G. Roepke, P. Sahu, S. Shlomo, R. Wada, J. Wang, G. ViestiM. CinauseroZ. ChenY. El MasriD. FabrisK. HagelT. KeutgenS. KowalskiM. LunardonS. MorettoG. NebbiaJ. Natowitz L. QinS. PesenteG. Prete V. RizziG. Viesti Texas A&M, Padova, Legnaro, Krakow, Katowice,Louvain la Neuve, Lanzhou Texas A&M University, College Station, Texas INFN Laboratori Nazionali di Legnaro, Legnaro, Italy INFN Dipartimento di Fisica, Padova, Italy Jagellonian University, Krakow, Poland UCL, Louvain-la-Neuve, Belgium
35
Figure 2. The alpha-particle cluster structure of the Hoyle-state in 12C, as predicted using Fermionic Molecular Dynamics (M. Chernykh, et al., Phys. Rev. Lett. 98, 032501 (2007)).
36
We Hope To Be Able To Welcome Y’ALL to NN 2012 In San Antonio, Texas Torch-of-Friendship River-Walk-Dining Shrine of Texas Liberty Henry B. Gonzalez Convention Center
38
Note: Same at low density Rho LE ~.005 fm -3 M. Beyer et al. nucl-th/0310055 Light Clusters in Nuclear Matter of Finite Temperature
39
Fig. 9 Isotopic yield ratios for 64 Ni+ 124 Sn/ 64 Zn+ 112 Sn are shown for α parameter (upper) and β(lower). Fig. 10 Similar plot as Fig.9, but for ( 64 Ni+ 197 Au )/ ( 64 Ni+ 112 Sn)
40
summary Exp.AMD 300fm/c AMD 2000fm/c LP, NN, Y( 64 Ni+ 124 Sn)/ Y( 64 Zn+ 112 Sn) α = 0.31+/- 0.10 β = -0.40+/- 0.18 α = 0.35+/- 0.04 β = -0.43+/- 0.07 α = 0.26+/- 0.02 β = -0.30+/- 0.04 LP, NN+PLF, Y( 64 Ni+ 124 Sn)/ Y( 64 Zn+ 112 Sn) α = 0.34+/- 0.10 β =- 0.39+/- 0.18 LP, with coulomb Y( 60 Ca+ 60 Ca)/ Y( 40 Ca+ 40 Ca) α = 3.08+/- 0.21 β = -4.09+/- 0.31 α = 2.17+/- 0.07 β = -2.34+/- 0.10 LP, without coulomb Y( 60 Ca+ 60 Ca)/ Y( 40 Ca+ 40 Ca) α =1.36 +/- 0.13 β = -2.84+/-0.12 α = 1.70+/- 0.04 β = -2.37+/-0.08 LP, Lijun’s exp. Y( 40 Ar+ 124 Sn)/ Y( 40 Ar+ 112 Sn) α = 0.41+/- 0.10 β = -0.49+/-0.11 IMF, Y( 64 Ni+ 124 Sn)/ Y( 64 Zn+ 112 Sn) α = 0.28+/- 0.01 β = -0.30+/-0.01 α = 0.42+/- 0.10 β = -0.56+/-0.13 α = 0.29+/- 0.10 β = -0.36+/-0.13 IMF, with coulomb Y( 60 Ca+ 60 Ca)/ Y( 40 Ca+ 40 Ca) α = 3.39+/-3.64 β = -5.07+/-4.40 α =1.88 +/- 0.42 β = -2.33+/-0.21 IMF, without coulomb Y( 60 Ca+ 60 Ca)/ Y( 40 Ca+ 40 Ca) α = 3.19+/- 0.51 β = -4.40+/-0.59 α = 1.66+/-0.22 β = -1.79+/-0.31 IMF, Lijun’s exp. Y( 40 Ar+ 124 Sn)/ Y( 40 Ar+ 112 Sn) α = 0.31+/- 0.25 β = -0.43+/-0.34
41
Experimental setup IMFs were measured by a Si quadrant telescope, backed by four CsI detectors (3cm) at 20°. The Si telescope consisted of four 5cm x 5cm area detectors, having thicknesses 129µm+300µm+1000µm+1000µm (021705 run) 61µm+300µm+1000µm+1000µm (040805 run &060605 run) Fig. 1 CsI detectorsFig. 3 Demon detectors (right)Fig. 2 Demon detectors (left) See Talk of Z. Chen
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.