Download presentation
Presentation is loading. Please wait.
Published byJean Douglas Modified over 9 years ago
1
The Evolution of Programming Languages Day 2 Lecturer: Xiao Jia xjia@cs.sjtu.edu.cn The Evolution of PLs1
2
The Functional Paradigm The Evolution of PLs2
3
High Order Functions zeroth order: only variables and constants first order: function invocations, but results and parameters are zeroth order n-th order: results and parameters are (n- 1)-th order high order: n >= 2 The Evolution of PLs3
4
LISP f(x, y) (f x y) a + b (+ a b) a – b – c (- a b c) (cons head tail) (car (cons head tail)) head (cdr (cons head tail)) tail The Evolution of PLs4
5
It’s straightforward to build languages and systems “on top of” LISP (LISP is often used in this way) The Evolution of PLs5
6
Lambda f = λx.x 2 (lambda (x) (* x x)) ((lambda (x) (* x x)) 4) 16 The Evolution of PLs6
7
Dynamic Scoping int x = 4; f() { printf(“%d”, x); } main() { int x = 7; f(); } The Evolution of PLs7 Static Scoping Dynamic Scoping Describe a situation in which dynamic scoping is useful
8
Interpretation Defining car (cond ((eq (car expr) ’car) (car (cadr expr)) ) … The Evolution of PLs8
9
Scheme corrects some errors of LISP both simpler and more consistent (define factorial (lambda (n) (if (= n 0) 1 (* n (factorial (- n 1)))))) The Evolution of PLs9
10
Factorial with actors (define actorial (alpha (n c) (if (= n 0) (c 1) (actorial (- n 1) (alpha (f) (c (* f n))))))) The Evolution of PLs10
11
Static Scoping (define n 4) (define f (lambda () n)) (define n 7) (f) The Evolution of PLs11 LISP: 7 Scheme: 4
12
Example: Differentiating The Evolution of PLs12
13
Example: Differentiating The Evolution of PLs13 (define derive (lambda (f dx) (lambda (x) (/ (- (f (+ x dx)) (f x)) dx)))) (define square (lambda (x) (* x x))) (define Dsq (derive sq 0.001)) -> (Dsq 3) 6.001
14
SASL St. Andrew’s Symbolic Language The Evolution of PLs14
15
Lazy Evaluation nums(n) = n::nums(n+1) second (x::y::xs) = y second(nums(0)) = second(0::nums(1)) = second(0::1::nums(2)) = 1 The Evolution of PLs15 infinite list
16
Lazy Evaluation if x = 0 then 1 else 1/x In C: X && Y if X then Y else false X || Y if X then true else Y if (p != NULL && p->f > 0) … The Evolution of PLs16
17
Standard ML (SML) MetaLanguage The Evolution of PLs17
18
Function Composition - infix o; - fun (f o g) x = g (f x); val o = fn : (’a -> ’b) * (’b -> ’c) -> ’a -> ’c - val quad = sq o sq; val quad = fn : real -> real - quad 3.0; val it = 81.0 : real The Evolution of PLs18
19
List Generator infix --; fun (m -- n) = if m < n then m :: (m+1 -- n) else []; 1 -- 5 [1,2,3,4,5] : int list The Evolution of PLs19
20
Sum & Products fun sum [] = 0 | sum (x::xs) = x + sum xs; fun prod [] = 1 | prod (x::xs) = x * prod xs; sum (1 -- 5); 15 : int prod (1 -- 5); 120 : int The Evolution of PLs20
21
Declaration by cases fun fac n = if n = 0 then 1 else n * fac(n- 1); fun fac 0 = 1 | fac n = n * fac(n-1); The Evolution of PLs21
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.