Presentation is loading. Please wait.

Presentation is loading. Please wait.

Stability of Extra-solar Planetary Systems C. Beaugé (UNC) S. Ferraz-Mello (USP) T. A. Michtchenko (USP) USP-UNC team on Exoplanets:

Similar presentations


Presentation on theme: "Stability of Extra-solar Planetary Systems C. Beaugé (UNC) S. Ferraz-Mello (USP) T. A. Michtchenko (USP) USP-UNC team on Exoplanets:"— Presentation transcript:

1 Stability of Extra-solar Planetary Systems C. Beaugé (UNC) S. Ferraz-Mello (USP) T. A. Michtchenko (USP) USP-UNC team on Exoplanets:

2

3 (Sequence Number) III II I 28 planets in 12 multiplanet systems (*) (*)  Eri not included since too uncertain.

4 3 (4) classes Ia – Planets in mean-motion resonances Ib – Low-eccentricity Non-resonant Planet Pairs II – Non-resonant Planets with a Significant Secular Dynamcis III – Weakly interacting Planet Pairs

5 CLASS Ia – Planet Pairs in Mean Motion Resonance

6 GJ 876

7 Solar System without Saturn 50 Myr Collision Chaos Order Grid: 33x251 Ref: Michtchenko (unpub.) 2/1 7/3 5/2 8/3.

8 M0=1.15 Msun m1=1.7 Mjup/sin i m2=1.8 Mjup/sin i

9 HD 82943 i=90 deg Ref: Ferraz-Mello et al. (2005) Axes: x = e2.cos  y = e2.sin  RED = collision in t<260,000 yrs GRAY=very chaotic WHITE=mild or almost no chaos

10 Ref: Ferraz-Mello et al. (2005)

11 HD 82943 i=30 deg Axes: x = e2.cos  y = e2.sin  RED = collision in t<260,000 yrs GRAY=very chaotic WHITE=mild or almost no chaos Ref: Ferraz-Mello et al. (2005)

12 (O-C) of solution B vs. (O-C) of the Mayor et al. solution (squares) Ref: Ferraz-Mello et al. 2005

13 Solar System without Saturn 50 Myr Collision Chaos Order Grid: 33x251 Ref: Michtchenko (unpub.) 2/1 7/3 5/2 8/3.

14 CLASS Ib – Low Eccentricity Near-Resonant Planet Pairs

15

16 Neighborhood of Uranus  Ref: Michtchenko & Ferraz-Mello, 2001

17 CLASS Ib – Low-Eccentricity Near-Resonant Planet Pairs

18 Grid: 21x101 Neighborhood of the 3 rd planet of pulsar B1257 +12

19 Grid 21x51 CHAOS ORDER Neighborhood of the 3 rd planet of pulsar B1257 +12 X

20 Class II – NR Pairs with significant Secular Dynamics 

21 Dynamical map of the neighborhood of planet  And D cf. Robutel & Laskar (2000) unpublished White line: Colision line with planet C Black spot: actual position of  And D chaotic regular 1/5 2/11

22

23 Consequences Poisson-Laplace invariance of semi-major axes in the Solar System (at order m ) In Extra-solar systems (with large eccentricities) =0 as far as a close approximation of the two planets does not occur. i 2

24 Consequences In a system formed by two coplanar planets the eccentricities vary in anti-phase because of N.B. cos i = 0

25 Eccentricity variation of upsilon Andromeda planets B(green), C(red), D(blue) in a 100,000-yr simulations.

26  Class III – Weakly Interacting Planet Pairs ????

27 CLASS Ia – Planet Pairs in Mean Motion Resonance

28 Ref: Papaloizou, Cel. Mech. Dyn. Astron 87 (2003). Model: 2 planets & 1 gap a=0.8 and a=1.4 Fig. scale 2x2

29 Evolution of a 2-planet system under [2/1 resonance] non-conservative forces (mass ratio 0.54) Ref. Ferraz-Mello et al. Cel. Mech. Dyn. Astron. (2003)     2 1 2 1 [arbitrary units]

30 SYMMETRIC APSIDAL COROTATIONS  (0,0)

31 Stable stationary solutions with aligned periastra At conjunction both planets are at the perihelion. N.B. m < m (“internal case”) 1 2 2 1 m /m = const. Ex: HD82943 m2/m1=1.06  + + + [2/1 resonance]

32 Stable asymmetric stationary solutions. 2/1 resonance 0.11 0.22 0.33 0.44 0.56 0.67 0.78 0.89 1.00 m < m 2 1 (external cases) Ref: Ferraz-Mello et al. Cel. Mech. Dyn. Astron. (2003)

33 ASYMMETRIC APSIDAL COROTATIONS

34 Ref: Ferraz-Mello et al. (2003) Stable Stationary Solutions. 3/1 resonance. Asymmetric Anti-alligned 0.11 0.22 0.33 0.44 0.56 0.67 0.78 0.89 1.1 1.2 1.0 External Internal PROBLEM: 55 Cnc b,c..... e1=0.02 e2=0.44 m2/m1=0.28 (?????)

35 http://www.astro.iag.usp.br/~dinamica/usp-unc.htm @ArXiv: Astro-ph/0404166 /0402335 /0301252 /0210577 References downloadable from:

36

37 THE PLANETS OF THE STAR GJ 876 (Gliese 876) MASSES [unit: Jupiter mass] (B) 1.89 /sin i (C) 0.56 1/sin i ~ 1.25-2.0

38 THE PLANETS OF UPSILON ANDROMEDA MASSES [unit: Jupiter mass] (B) 0.69 /sin i (C) 1.89 (D) 3.75

39 0 10 20 mutual inclination HD 82943 Mayor et al. (2004) planar elements and masses and initial mutual inclination 10. o o planar case

40 Radial Velocity of a star with 2 planets – HD 82943 Roughly 50 percent of the stars for which one planet was detected show evidence of additional companions. Ref. Marcy et al Astroph.J. 556 (2001) 51500 52000 52500 Mayor et al. A&A, 2004

41  And F8 V L=3L_sun d=13.47 pc M=1.3 M_sun agee 2-3 Gyrs Absence of astrometric variation means sin i > 0,4 (i > 25deg) Absence of transits means sin i < 0.9925 (i < 83 deg)

42 Corotations as functions of the eccentricities

43 Intersecting orbits of an asymmetric stationary solution Eccentricities Inner 0.17 Outer 0.38 Mass ratio 0.44 (ext.)

44 Asymmetric solutions bifurcating from solutions with aligned periastra Asymmetric solutions bifurcating from solutions with anti-aligned periastra

45 Long-term evolution of the eccentricity (same solution)

46 Evolution of the eccentricities in the same solution


Download ppt "Stability of Extra-solar Planetary Systems C. Beaugé (UNC) S. Ferraz-Mello (USP) T. A. Michtchenko (USP) USP-UNC team on Exoplanets:"

Similar presentations


Ads by Google