Download presentation
Presentation is loading. Please wait.
Published byJasmine Shaw Modified over 9 years ago
1
Thermoplastic Elastomers with Complex Macromolecular Architectures 179 Technical Meeting, April 18-20,2011, Akron, OH Nikos Hadjichristidis, University of Athens, Greece
2
Acknowledgements Professor Jimmy Mays, University of Tennessee at Knoxville, USA Assoc. Professor Sam Gido, UMASS Amherst, USA Professor Roland Weidisch, Martin-Luther University at Halle, Germany Assoc. Professor Ermis Iatrou, University of Athens, Greece Assoc. professor Marinos Pitsikalis,University of Athens, Greece Dr George Koutalas, University of Athens, Greece Dr Gabriel Velis, University of Athens, Greece Many Thanks to the Rubber Division of ACS Special Thanks to Professor Roderic Quirk
3
STRENTH OF ANIONIC POLYMERIZATION No Termination (Trully Living) Well-Defined polymers(Low Molecular, Structural, Compositional Dispersity, Control of MW up to a Few Hundred Thousands) Compatible with Dienes (Butadiene, Isoprene,2-Methyl-pentadiene) Control of Microstructure (1,2; 1,4; cis and trans, Polyolefins by H 2 ) Not a Method of Choice in Industry. Many Steps under inert and Clean Atmosphere, Time Consuming Only if it is Necessary, e.g. KRATONS Why is Important for Industrial Application? Model Polymers, Structure-Properties relationships
4
Synthesis and Properties of Well-Defined Non-Linear Homo(rheology) and Block Copolymers (morphology and micellization) Prog. Polym. Sci.,24, 875 (1999); Chem. Rev., 101, 3747 (2001) Prog. Polym. Sci.,30, 725 (2005); Adv. Polym. Sci., 189, 1 (2005), Chem. Rev., 109, 5528 (2009) Monomers: St, Bd, Is, 2VP, MMA, HIC, D 3, NCAs Multiarm Stars Dumbell Dendritic Polymers wdLDPE Dendritic BC MMP PBocLL-PBLG-PBocLL
5
Dendritic G2 (or Star),G3 Combs Dendritic Polymers G2, G3 wd-LDPE (Models) α,ω-Branched Stars r-Combs MODEL POLYETHYLENES (Complex MA) Low MW and Structural Dispersity Understand the Behavior and Improve the Performance wd-PE (Models) LDPE: Tree-like. High MW and Structural Dispersity Exact Combs
6
Block-Comb Copolymers Block-Graft Copolymers
7
Block-Double-Graft Co- and Terpolymers Macromolecules, 29, 7022 (1996); 31, 5690 (1998); 31, 6697 (1998); 31, 7659 (1998); 33, 2039 (2000); 34, 6333 (2001); 35, 5903 (2002); 41, 4565 (2008); 42, 4155 (2009) Eur. Polym. J., 44, 3790 (2008); 45, 2902 (2009) Macromol. Symp., 215, 111 (2004); 233, 42 (2006) Polymer, 50, 6297 (2009)
8
Synthesis ofBlock-Double-Graft Co- and Terpolymers
9
Monitoring the synthesis of the BDG polymers by SEC
10
Molecular Characteristics of Block-Double-Graft Terpolymers BDG5 BDG6, BDG7, HDG BDG1 to BDG4
11
Morphological Characteristics of Block-Double-Graft Terpolymers BDG5 BDG6, BDG7, HDG BDG1 to BDG4
12
SAXS TEM χN (BDG1-BDG3): 1.1-0.53); BDG4: 0.27 PBd-1,4/PBd-1,2: One Phase BDG1 to BDG4 1 st Group BDG1 similar to BDG3
13
BDG5 SAXS Totally disorder state χN ~ 3 Asymmetric : 11 vol % PBd-1,2 2 nd Group
14
3 rd Group TEM SAXS BDG6, BDG7, HDG Symmetric: ~ 50 vol % (total PDs) BDG7 similar
15
Stress-strain curves for (1) BDG6, 9 junction points, branch mol. weight 14 000 g/mol; (2) BDG7, 3 junction points, branch molecular weight 32 800 g/mol; (3) HDG, 9 junction points, branch molecular weight 12 500 g/mol; (4) Kraton D1101; and (5) PI-g-PS 2 multigraft copolymer with 9 junction points, branch molecular weight 13 000 g/mol. BDG6, BDG7, HDG
16
Block-Comb/Graft Copolymers PS-PI I x -PS PS S 5 -PI I x -PS S 5 PS-PI SI x -PS Macromolecules, 38, 4996 (2005); 40, 5835 (2007); J. Polym. Sci., Polym. Chem., 43, 4030 (2005); 43, 4040 (2005) KGK-Kautschuk Gummi Kunststoffe, 61, 597 (2008)
17
Synthesis of PS-PI I x -PS Copolymers
18
Monitoring the Synthesis of Monitoring the Synthesis of PS-PI I 10 -PS by SEC PI branch PI macromonomer PS block PS-PI I 5 copolymerPS-b-(PI-g-PI)-b-PS Fract. PS-b-(PI-g-PI)-b-PS
19
Molecular Characteristics of the PS-PI I x -PS Copolymers Sample PS blockPI branchFinal Copolymer M w a (x10 -3 ) I bI b I bI b M n c (x10 -3 ) M w a (x10 -3 ) I bI b I dI d %wt PS e PS-PI I 5 21.51.032.361.06 69.273.01.031.0519.1 PS-PI I 10 61.072.61.151.1923.0 PS-PI I 20 55.070.01.261.2722.4 PS-PI I 10 -PS1401451.051.0419.2 PS-PI I 20 -PS1221321.071.0823.0 PS-PI I 40 -PS1111221.071.1022.4 a: SEC-TALLS in THF at 35 ο C; b: SEC in THF at 35 ο C; c: Membrane Osmometry in toluene at 40 ο C; d: Calculated from M w and M n, e: 1H NMR in CDCl3 at 30 ο C
20
Synthesis of PS S 5 -PI I x -PS S 5 Copolymers
21
Monitoring the Synthesis of Monitoring the Synthesis of PS S 5 -PI I 10 -PS S 5 PS branchPS macromon. PS S block PI branchPI macromon. (PS-g-PS)-b-(PI-b-PI) (PS-g-PS)-b-(PI-b-PI)-b-(PS-g-PS) Fraction. PS S 5 -PI I 10 -PS S 5
22
Molecular Characteristics of PS S 5 -PI I x -PS S 5 Copolymers Sample PS S blockPI branchFinal Copolymer M w a (x10 -3 ) I bI b I bI b M n c (x10 -3 ) M w a (x10 -3 ) I bI b I dI d %wt PS e PS S 5 -PI I 5 26.81.123.311.10 70.3771.071.1020.5 PS S 5 -PI I 10 66.0801.191.2121.4 PS S 5 -PI I 20 78981.251.2624.8 PS S 5 -PI I 10 - PS S 5 1311431.071.0920.5 PS S 5 -PI I 20 - PS S 5 1221361.071.1121.4 a: SEC-TALLS in THF at 35 ο C; b: SEC in THF at 35 ο C; c: Membrane Osmometry in toluene at 40 ο C; d: Calculated from M w and M n; e: 1 H NMR in CDCl 3 at 30 ο C PS branchesPS S block M w a (x10 -3 )I bI b Number of branches M w a (x10 -3 )I bI b 2.661.07526.81.12
23
Synthesis of PS-PI SI x -PS Copolymers
24
Monitoring the Synthesis of Monitoring the Synthesis of PS-PI S I4 -PS by SEC PS arm block PS-b-PI armPS-b-PI macromon. PS-b-[PI-g-(PI-b-PS)] PS block of the bb PS-b-[PI-g-(PI-b-PS)]-b-PS Fractionated PS-b-[PI-g-(PI-b-PS)]-b-PS
25
Molecular Characteristics PS-PI SI x -PS Copolymers Sample PS blockPS armPS-PI armFinal Copolymer M w a (x10 -3 ) I bI b I bI b I bI b M n c (x10 -3 ) M w a (x10 -6 ) I bI b I dI d %wt PS e PS-PI SI 2 21.51.0312.01.0320.21.04 1450.1571.071.0927.0 PS-PI SI 4 -1.271.06-33.6 PS-PI SI 4 - PS -0.3071.07-26.2 a: SEC-TALLS in THF at 35 ο C; b: SEC in THF at 35 ο C; c: Membrane Osmometry in toluene at 40 ο C; d: Calculated from M w and M n; e: 1 H NMR in CDCl 3 at 30 ο C
26
ΤΕΜ Results SampleΦ PS M n x 10 -3 χΝMorphology PS-PI I 5 0.1869.267.5PS cylinders in PI matrix PS-PI I 10 0.2161.058.5PS cylinders in PI matrix PS-PI I 20 0.2055.052.0PS cylinders in PI matrix PS-PI I 10 -PS0.18140137PS cylinders in PI matrix PS-PI I 20 -PS0.21122117PS cylinders in PI matrix PS-PI I 40 -PS0.20111105PS cylinders in PI matrix PS S 5 -PI I 5 0.1870.367.5PS cylinders in PI matrix PS S 5 -PI I 10 0.1966.062.8PS cylinders in PI matrix PS S 5 -PI I 20 0.227876.2PS cylinders in PI matrix PS S 5 -PI I 10 -PS S 5 0.18131125PS cylinders in PI matrix PS S 5 -PI I 20 -PS S 5 0.19122116PS cylinders in PI matrix PS-PI SI 2 0.24145141PS cylinders in PI matrix χ SI = 0.074 at 120 ο C ρ PS = 1.05 g/cm 3 at 120 ο C ρ PI = 0.91 g/cm 3 at 120 ο C
27
PS S 5 -PI I 5 (φ PS = 0.18) PS S 5 -PI I 10 -PS S 5 (φ PS = 0.18)
28
Stress-Strain Behavior of Block-Comb/Graft Copolymers Influence of the Architecture Kraton D1101
29
Conclusions Anionic Polymerization High Vacuum Techniques Lead to Well-Defined Thermoplastic Elastomers with Complex Macromolecular Architectures These Novel Thermoplastic Elastomers Show Interesting Mechanical Properties Strain at Break Can Greatly Exceed Those of Commercial TPE
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.