Download presentation
Presentation is loading. Please wait.
Published byHollie Jasmine Harrington Modified over 9 years ago
1
2015-10-8Dep. phys., Univ. Fribourg 1 Social Tagging Networks: Structure, Dynamics & Applications Collaborators: Chuang LIU ( 刘闯 ), Yi-Cheng ZHANG ( 张翼成 ) Tao ZHOU ( 周涛 ) Zi-Ke ZHANG ( 张子柯 ) Department of Physics, University of Fribourg, Switzerland
2
Dep. phys., Univ. Fribourg 2 2015-10-8 Outline Structure and Dynamics of Social Tagging Networks What is SNT? Hypergraph Strutures Dynamics and emergent properties Applications in Personalized Recommendation (PR) Why Recommendation? How Tags benefit PR? Conclusions & Discussion
3
Dep. phys., Univ. Fribourg 3 2015-10-8 What is social tagging networks?
4
Dep. phys., Univ. Fribourg 4 2015-10-8 What is social tagging networks?
5
Dep. phys., Univ. Fribourg 5 2015-10-8 From Graph to Hypergraph Bipartite Network [EPL, 90 (2010) 48006] Hyper Network [from wikipedia.org]wikipedia.org Unipartite Network
6
Dep. phys., Univ. Fribourg 6 2015-10-8 Hypergraph structures in STN Zhang and Liu, J. Stat. Mech. (2010) P10005 Hyperedge: basic unit Hyper Network
7
Dep. phys., Univ. Fribourg 7 2015-10-8 Two roles of social tags Zhang and Liu, J. Stat. Mech. (2010) P10005 Roles Role1: an accessorial tool helping users organize resources: Fig. (a) Role2: a bridge that connects users and resources: Fig. (b)
8
Dep. phys., Univ. Fribourg 8 2015-10-8 Dynamics and evolution of social tagging networks (1/3) At each time step, a random user can either: Choose an item(resource), and annotate it with a relevant or random tag with probability p (Role 1) or choose a tag, and find a relevant or random item with probability 1-p (Role 2)
9
Dep. phys., Univ. Fribourg 9 2015-10-8 Dynamics of social tagging networks (2/3) HyperDegree Distribution: Clustering Coefficient:
10
Dep. phys., Univ. Fribourg 10 2015-10-8 Dynamics of social tagging networks (3/3) Average Distance:
11
Dep. phys., Univ. Fribourg 11 2015-10-8 How to be personalized? Social influence Content-based recommendation Network-based recommendation Zhang et al. Physica A 389 (2010) 179 Applications in Personalized Recommendation (PR) Why Recommendation? Information overload!
12
Dep. phys., Univ. Fribourg 12 2015-10-8 Method I&II:Tripartite Hybrid(Role 1) Zhang et al. Physica A 389 (2010) 179 Item-user: [Method I, PRE 76 (2007) 046115] Item-tag: [Method II] Linear Hybrid:
13
Dep. phys., Univ. Fribourg 13 2015-10-8 Method III: Tag-driven(Role 2) Zhang et al. Accepted by EPL Method III:
14
Dep. phys., Univ. Fribourg 14 2015-10-8 Algorithm Performance (1/3)
15
Dep. phys., Univ. Fribourg 15 2015-10-8 Algorithm Performance (2/3)
16
Dep. phys., Univ. Fribourg 16 2015-10-8 Algorithm Performance (3/3)
17
Dep. phys., Univ. Fribourg 17 2015-10-8 Conclusions and Discussion Conclusions Structure and Dynamics The roles of social tags Application in Personalized recommendation Discussion Recommendation with full hypergraph structure Multi-scale recommendations (semantic-based) Recommendation with community structures
18
2015-10-8Dep. phys., Univ. Fribourg 18 Thank You! zhangzike@gmail.com Zi-Ke ZHANG
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.