Download presentation
Presentation is loading. Please wait.
1
Graphs of Trigonometric Functions
Digital Lesson Graphs of Trigonometric Functions
2
Properties of Sine and Cosine Functions
The graphs of y = sin x and y = cos x have similar properties: 1. The domain is the set of real numbers. 2. The range is the set of y values such that 3. The maximum value is 1 and the minimum value is –1. 4. The graph is a smooth curve. 5. Each function cycles through all the values of the range over an x-interval of 6. The cycle repeats itself indefinitely in both directions of the x-axis. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. Properties of Sine and Cosine Functions
3
Graph of the Sine Function
To sketch the graph of y = sin x first locate the key points. These are the maximum points, the minimum points, and the intercepts. -1 1 sin x x Then, connect the points on the graph with a smooth curve that extends in both directions beyond the five points. A single cycle is called a period. y x y = sin x Copyright © by Houghton Mifflin Company, Inc. All rights reserved. Sine Function
4
Graph of the Cosine Function
To sketch the graph of y = cos x first locate the key points. These are the maximum points, the minimum points, and the intercepts. 1 -1 cos x x Then, connect the points on the graph with a smooth curve that extends in both directions beyond the five points. A single cycle is called a period. y x y = cos x Copyright © by Houghton Mifflin Company, Inc. All rights reserved. Cosine Function
5
Example: Sketch the graph of y = 3 cos x on the interval [–, 4].
Partition the interval [0, 2] into four equal parts. Find the five key points; graph one cycle; then repeat the cycle over the interval. max x-int min 3 -3 y = 3 cos x 2 x y x (0, 3) ( , 3) ( , 0) ( , 0) ( , –3) Copyright © by Houghton Mifflin Company, Inc. All rights reserved. Example: y = 3 cos x
6
If |a| > 1, the amplitude stretches the graph vertically.
The amplitude of y = a sin x (or y = a cos x) is half the distance between the maximum and minimum values of the function. amplitude = |a| If |a| > 1, the amplitude stretches the graph vertically. If 0 < |a| > 1, the amplitude shrinks the graph vertically. If a < 0, the graph is reflected in the x-axis. y x y = 2sin x y = sin x y = sin x y = – 4 sin x reflection of y = 4 sin x y = 4 sin x Copyright © by Houghton Mifflin Company, Inc. All rights reserved. Amplitude
7
If b > 1, the graph of the function is shrunk horizontally.
The period of a function is the x interval needed for the function to complete one cycle. For b 0, the period of y = a sin bx is For b 0, the period of y = a cos bx is also If 0 < b < 1, the graph of the function is stretched horizontally. y x period: period: 2 If b > 1, the graph of the function is shrunk horizontally. y x period: 4 period: 2 Copyright © by Houghton Mifflin Company, Inc. All rights reserved. Period of a Function
8
Use basic trigonometric identities to graph y = f (–x)
Example 1: Sketch the graph of y = sin (–x). The graph of y = sin (–x) is the graph of y = sin x reflected in the x-axis. y x y = sin (–x) Use the identity sin (–x) = – sin x y = sin x Example 2: Sketch the graph of y = cos (–x). The graph of y = cos (–x) is identical to the graph of y = cos x. y x Use the identity cos (–x) = – cos x y = cos (–x) y = cos (–x) Copyright © by Houghton Mifflin Company, Inc. All rights reserved. Graph y = f(-x)
9
Use the identity sin (– x) = – sin x:
Example: Sketch the graph of y = 2 sin (–3x). Rewrite the function in the form y = a sin bx with b > 0 Use the identity sin (– x) = – sin x: y = 2 sin (–3x) = –2 sin 3x period: 2 3 = amplitude: |a| = |–2| = 2 Calculate the five key points. 2 –2 y = –2 sin 3x x y x ( , 2) (0, 0) ( , 0) ( , 0) ( , -2) Copyright © by Houghton Mifflin Company, Inc. All rights reserved. Example: y = 2 sin(-3x)
10
The Graph of y = Asin(Bx - C)
The graph of y = A sin (Bx – C) is obtained by horizontally shifting the graph of y = A sin Bx so that the starting point of the cycle is shifted from x = 0 to x = C/B. The number C/B is called the phase shift. amplitude = | A| period = 2 /B. y y = A sin Bx Amplitude: | A| x Starting point: x = C/B Period: 2/B Copyright © by Houghton Mifflin Company, Inc. All rights reserved.
11
Example Determine the amplitude, period, and phase shift of y = 2sin(3x-) Solution: Amplitude = |A| = 2 period = 2/B = 2/3 phase shift = C/B = /3 Copyright © by Houghton Mifflin Company, Inc. All rights reserved.
12
Example cont. y = 2sin(3x- )
Copyright © by Houghton Mifflin Company, Inc. All rights reserved.
13
Amplitude Period: 2π/b Phase Shift: c/b Vertical Shift
Copyright © by Houghton Mifflin Company, Inc. All rights reserved.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.