Download presentation
Presentation is loading. Please wait.
Published byArthur Young Modified over 9 years ago
1
Computer Science 9616a, Set 1 1. Introduction to Database Security 2. DAC for Relations CS9616Set 1, Introduction and DAC for relations1
2
1. What is a Database? CS9616 Set 1, Introduction and DAC for relations 2 1. Introduction to Database Security 2. DAC for Relations
3
CS9616 Set 1, Introduction and DAC for relations 3 What is a Database? data model: way of declaring types and relating them to each other, stored in a schema languages: for creating, deleting and updating tuples/objects for querying -- usually now high-level, ad-hoc queries; can be interactive or embedded in programs persistence: the data exists after the program that created it finishes its execution sharing: many users and applications can access and share the persistent data recovery: data persists in spite of failures transactions: can be defined and run concurrently
4
CS9616 Set 1, Introduction and DAC for relations 4 What is a Database? cont’d arbitrary size: amount of data not limited by the computer's main memory or virtual memory integrity constraints: an be declared and the system will enforce them. Examples are uniqueness of keys, data types, referential integrity security: authorization controls can be declared and will be enforced by the system views: definition of virtual or derived data is provided for by the system versions: multiple versions of an evolving schema are allowed and the connections maintained by the system database administration tools: things like backup, bulk loading provided by the system distribution: maintaining multiple, related, replicated, persistent data sets and allowing for their querying
5
What is Database Security? CS9616 Set 1, Introduction and DAC for relations 5
6
What is Database Security? Protection from threats to the database CS9616 Set 1, Introduction and DAC for relations 6
7
What are the threats? Improper release of information Improper modification of data Denial of service Threats can be fraudulent or non-fraudulent Webster's definition of fraud: 1a: DECEIT, TRICKERY; specif: intentional perversion of truth in order to induce another to part with something of value or to surrender a legal right CS9616 Set 1, Introduction and DAC for relations 7
8
CS9616 Set 1, Introduction and DAC for relations 8 Database Protection Requirements Protection from improper access by unauthorized users Protection from inference (usually statistical databases) Integrity of the database (partly the job of atomic transactions, partly of the recovery mechanism of the database, and partly access control) Operational integrity (mainly the job of concurrency control - two-phase locking) Semantic integrity of data (mainly the job of the DBMS and integrity constraints)
9
CS9616 Set 1, Introduction and DAC for relations 9 Protection Requirements, cont’d Accountability and auditing: to act as a deterrent, also for analysis of security failures User authentication Management and protection of sensitive data - for various reasons, some data should be kept secret from some or most users Multilevel protection: enhancement of previous point, where data exists at many levels Confinement: compartmentalizing of information to prevent transfer to other compartments There are privacy requirements in government legislation which govern privacy issues.
10
CS9616 Set 1, Introduction and DAC for relations 10 User Types for DBMS I ncluding Security Features database administrator application programmer on-line query user parametric user (uses canned applications) security administrator security auditor
11
CS9616 Set 1, Introduction and DAC for relations 11 Data Repositories for DBMS Including Security database schema actual data performance data (indexes, histograms) log for recovery purposes user profiles/permissions security rules or axioms security log
12
CS9616 Set 1, Introduction and DAC for relations 12 Some Definitions (partly from the “orange book”) Subject: an entity using a system which wishes to gain access to data or system resources. A subject can be a user, set of users, a process or a domain. A domain is further defined as the context or protection environment in which a process operates (e.g. DBMS inside Unix)
13
CS9616 Set 1, Introduction and DAC for relations 13 Definitions, cont’d Object : an entity that must be protected. Can be an operating system resource, a file, parts of a database, or subjects (like a process or a domain). All objects are uniquely identified by a name. In a database, an object is any granule the system can talk about: e.g. a relation, an index, a database, a record, an application, an attribute value, but nothing smaller than an attribute value. If all users are represented by processes within a system, then subjects are regarded as objects to be protected, so that Subjects ⊂ Objects. In general, it is probably true that Objects ∩ Subjects ≠ ∅, and the exact relationship should be specifically stated.
14
CS9616 Set 1, Introduction and DAC for relations 14 Definitions, cont’d Access mode: some operation on the object, e.g. read, write, execute (a program or a method), use (if the object is memory or printer). Security Policy: high level guidelines (off-line) defining the basic choices made by an organization about the control of security. Closed System: only explicitly authorized accesses allowed. Open System: accesses not explicitly forbidden are allowed. Mandatory Access Control (MAC): access of subjects to objects is governed by security labels on the subjects and objects. Usually centrally controlled by a security administrator. Discretionary Access Control (DAC): access of subjects to objects is at the discretion of the original owner of the data. Rights can be passed from one subject to another.
15
CS9616 Set 1, Introduction and DAC for relations 15 Access Matrix Model – basis for DAC Objects SubjectsO 1 …O j …OmOm S1S1 A[s 1, o 1 ]A[s 1, o j ]A[s 1, o m ]. SiSi A[s i, o 1 ]A[s i, o j ]A[s i, o m ]. SnSn A[s n, o 1 ]A[s n, o j ]A[s n, o m ] A[s i,o j ] contains, in general, a list (set) of access modes allowed by subject s i on object o j.
16
CS9616 Set 1, Introduction and DAC for relations 16 Access Matrix Model all discretionary access control is ultimately represented by an access matrix. since Objects ∩ Subjects ≠ ∅, the matrix is in general rectangular, not square. A[s i, o j ] can also contain flags like r+ to indicate that read access is allowed (r) and can be passed on to other subjects (+) this model is used in operating systems as well as database systems.
17
CS9616 Set 1, Introduction and DAC for relations 17 Implementation Access Matrices are sparse, or too large for main memory. Thus, often stored by row, or by column. by row: called a Capability List, because it lists, for a single subject all the accesses allowed. by column: called an Access Control List, because it lists, for each object, all the (subject, access mode) pairs.
18
CS9616 Set 1, Introduction and DAC for relations 18 Summary of things to look for in a security model definition of subjects definition of objects discussion of whether subjects ⊆ objects, or vice versa definition of the access modes administrative rights/procedures additional predicates/constraints on access additional predicates/constraints on administration of rights
19
Harrison-Ruzzo-Ullman 1 access matrix model represent the state as a triple Q = (S, O, A) where S is the set of subjects, O is the set of objects, A is the access matrix. enhanced by Denning (1982) to make each matrix entry a rule which specifies the authorization applies only if some condition is satisfied. the conditions can be data dependent, time dependent, context dependent or history (of previous accesses) dependent. access modes are usually: read, write, append, execute and own. the “own’’ privilege means the subject is the owner of the object, and can administer authorizations on the object. in some versions of the model, where processes can create subprocesses, there is a control access mode. If p 1 creates p 2 then p 1 controls the grant and revoke of authorizations for p 2. 1. Harrison, Michael A.; Ruzzo, Walter L.; Ullman, Jeffrey D. (August 1976). "Protection in Operating Systems". Communications of the ACM 19 (8): 461–471. CS9616 Set 1, Introduction and DAC for relations 19
20
Operations in HRU Harrison et al. defined 6 primitive operations: 1. Enter access mode m into A[s,o] 2. Delete access mode m from A[s,o] 3. Create subject s 4. Destroy subject s 5. Create object o 6. Destroy object o Each operation changes the state Q = (S, O, A). CS9616 Set 1, Introduction and DAC for relations 20
21
Examples of commands for HRU the following shows how a file creation command, and a command to grant read access on the file to another user, would be written. command Create(process, file) create object file enter o into A[process, file] end. command GrantRead(owner, friend, file) if o in A[owner, file] then enter r into A[friend, file] end. CS9616 Set 1, Introduction and DAC for relations 21
22
Passing rights to others Denning proposed some extensions to the model m * in A[s,o] means that subject s can grant the privilege m on object o to other subjects. However in Denning's model, the privilege cannot be passed on by these other subjects. in some relational database systems, the privilege can be granted by a GRANT...(WITH GRANT OPTION) statement, (passes on the ability to grant the privilege). in Denning's extension, there is also a transfer privilege, indicated by m +, where if subject s passes the privilege m on o to someone else, then s loses the privilege. transfer of privileges may also take place when a process, which has a privilege, creates a subprocess. Some privileges may be passed to the subprocess. revocation of privileges may only be allowed by the owner of the object, or may be allowed by the subject that passed the privilege along. CS9616 Set 1, Introduction and DAC for relations 22
23
Safety In the original Harrison, Ruzzo and Ullman paper, there is a definition of safety of a protection mechanism. Informally, a system is unsafe if some subject can get some right r on object o, (which presumably we did not want to happen). This is called a leak. The formal definition says a command α leaks some generic right r from configuration Q = (S, O, A), if α when run on Q, can execute the primitive operation enter r into A[s,o] which did not previously contain r. Theorem in HRU paper: If all commands contain only one primitive operation, the safety decision is NP-complete. If commands are more general, the safety decision is undecidable (it is shown that the protection system with general commands can simulate a Turing machine). Proof is in the Harrison, Ruzzo, Ullman paper. a recent revisit to these matters has been carried out by Tripunitara and Li CS9616 Set 1, Introduction and DAC for relations 23
24
CS9616 Set 1, Introduction and DAC for relations 24 Trojan Horses All discretionary models are susceptible to Trojan Horse attacks Suppose user U1 has read permission on file F1, and write permission on file F2, and user U2 has read permission on file F2, (U2 might be the owner of file F2 and have granted this write permission to U1). U2 is not supposed to know what is in F1. A Trojan Horse is a program which pretends to do one thing but does something else as well. It could be run with the permissions of user U1. It might be a corrupted system program, or any program. In particular, U1 may not intend to leak any information from file F1 to user U2. A program containing hidden code, running with the permissions of U1, could however do just that, by reading the information from F1 and writing it to F2.
25
Discretionary Access Control for Relational Databases all discretionary access control for relational databases is based on some original work for System R by Griffiths and Wade 2. basically look at the operations possible through SQL and the INSERT, UPDATE and DELETE statements in the language, and grant and revoke privileges which can be expressed by these statements. basic concept is that the creator of the table owns it, and can give access to other users by name. these rights can be given WITH GRANT OPTION or not. when a right is revoked, if it had been passed on, there might be a cascading of the revocation. Implies that the database system has to keep track of users as well as database granules all commercial relational DBMS packages use something like this as the basis for their access control – the grant and revoke statements are part of the SQL standard. 2. P.G. Griffiths and B. Wade, “An Authorization Mechanism for a Relational Database,” ACM Trans. Database Systems, vol. 1, no. 3, pp. 242-255, 1976. CS9616 Set 1, Introduction and DAC for relations 25 1. Introduction to Database Security 2. DAC for Relations
26
Basis for Griffiths and Wade Revocation Alice owns table R Alice grants select, insert on R to Bob with grant option Bob grants insert on R to Carol then Alice revokes the insert on R permission from Bob should Carol still have it? if Alice granted insert on R to Carol directly also, should Carol still have it after the revocation from Bob? i.e. should we have cascading revoke? one solution is to use timestamps another solution is to reassign Alice as the grantor of the permission for Carol CS9616 Set 1, Introduction and DAC for relations 26
27
Security in DB2 (from the manuals for version 9.5) There are the following kinds of authorities: System Administration Authority (SYSADM) Database Administration Authority (DBADM) Security Administrator (SECADM) System Control Authority (SYSCTRL) System Maintenance Authority (SYSMAINT) System monitor authority level (SYSMON) The following types of privileges are present: Database Privileges Schema Privileges Table and View Privileges Package Privileges Index Privileges CS9616 Set 1, Introduction and DAC for relations 27
28
CS9616 Set 1, Introduction and DAC for relations 28 from the DB2 manuals
29
Objects which can be Controlled include databases tables views indexes packages schemas aliases data types functions procedures triggers table spaces nodegroups buffer pools event monitors CS9616 Set 1, Introduction and DAC for relations 29
30
System Administration Authority Only SYSADM users can do: migrate a database change the database manager configuration file (includes specifying which groups have SYSCTRL or SYSMAINT authority) Grant and revoke DBADM authority Grant and revoke SECADM authority As well, they can do whatever a SYSCTRL, SYSMAINT or DBADM can do. CS9616 Set 1, Introduction and DAC for relations 30
31
System Control Authority Only users with SYSCTRL or higher authority can do: Update a database, node or distributed connections services directory Force users off the system Create or drop a database Drop, create or alter a table space Restore to new database As well, they can do whatever a SYSMAINT or SYSMON user can do. CS9616 Set 1, Introduction and DAC for relations 31
32
System Maintenance Authority Only users with SYSMAINT authority or higher can: Update database configuration files Backup a database or table space Restore to an existing database Perform roll forward recovery Start or stop a database instance Restore a table space Run trace Take DB system monitor snapshots of a database manager instance or its databases. Can do whatever SYSMON users can do CS9616 Set 1, Introduction and DAC for relations 32
33
Security Administration authority(SECADM) SECADM users can create, alter and drop audit policies, security label components, security policies and trusted contexts create and drop roles and security labels grant and revoke roles, exemptions, security labels execute the SQL statement TRANSFER OWNERSHIP on objects it is only granted to users, not groups or roles SECADM has no inherent privilege to access data stored in tables. CS9616 Set 1, Introduction and DAC for relations 33
34
Database Administration Authority Only a user with DBADM authority or higher can: Read log files Create, activate and drop event monitors Run the load utility Only a user with DBADM, SYSMAINT or higher authority can: Query the state of a table space Update log history files Quiesce a table space Reorganize a table Collect catalog statistics using the RUNSTATS utility CS9616 Set 1, Introduction and DAC for relations 34
35
Database Privileges database privileges are actions on a database as a whole. only users with SYSADM or DBADM can grant and revoke database privileges. BINDADD, allows creation of new packages CONNECT, allows a user to access the database CREATETAB (create table) the creator of a package automatically has CONTROL privilege on that package the creator of a table automatically has CONTROL privilege on the table. CREATE_NOT_ FENCED (has to do with running user-defined functions in a “not fenced” mode). CS9616 Set 1, Introduction and DAC for relations 35
36
Database Privileges, cont’d IMPLICIT_SCHEMA allows any user to create a schema implicitly by creating an object for a schema name whose name does not already exist. SYSIBM becomes the owner and PUBLIC is given the privilege to create objects in this schema. When a database is created, the following privileges are automatically granted to public: CREATETAB BINDADD CONNECT IMPLICIT_SCHEMA SELECT privilege on the system catalog views CS9616 Set 1, Introduction and DAC for relations 36
37
Table and View Privileges CONTROL: a user with CONTROL privilege has all privileges on the table or view, and can drop the table or view, can execute the RUNSTATS utility, and grant or revoke privileges on the table. The creator of a view automatically has CONTROL privilege on the view if they have CONTROL privilege on all tables and views referenced in the view definition. ALTER privilege means the user can add columns to a table or change or add comments on a table and its columns. ALTER also means the user can create a primary key. A user with the ALTER and REFERENCES privileges can create or drop a foreign key. CS9616 Set 1, Introduction and DAC for relations 37
38
Table and View Privileges, cont’d DELETE means the user can delete rows from a table or view. INDEX means the user can create an index on a table. The creator of an index automatically has CONTROL on the index. CONTROL allows the user to drop the index. INSERT allows insertion of tuples into a table or view. Also allows the user to run the IMPORT utility. REFERENCES allows the user to create and drop a foreign key. SELECT allows the user to retrieve rows from a table or view. Also allows the user to create a view on a table and to run the EXPORT utility. UPDATE allows the user to change an entry in a table or view. CS9616 Set 1, Introduction and DAC for relations 38
39
Granting and Revoking Privileges There are 2 SQL statements: Grant/Revoke privilege on table to user Some Rules users cannot grant privileges to themselves granting of privileges can be to a list of authorized users by authorization ID, or to PUBLIC to grant the CONTROL privilege, the user must have the SYSADM or DBADM authority can either list the privileges granted, or say ALL (which does not include CONTROL) CS9616 Set 1, Introduction and DAC for relations 39
40
Granting and Revoking Privileges, cont’d to grant DBADM authority, the user must have SYSADM WITH GRANT OPTION is now included in DB2 REVOKE can only be issued by the SYSADM, DBADM or someone with CONTROL privileges on the object. if a user received a privilege as an individual, and also via a GRANT to PUBLIC, and the PUBLIC one is revoked, the privilege remains (and if the individual one is revoked, the public one remains). privileges can be granted and revoked only on existing database objects. packages that are dependent on revoked privileges are marked unusable. They have to be rebound with the appropriate authority. when you revoke the CONTROL privilege from a user, you do not revoke any other privileges the user has on that object. CS9616 Set 1, Introduction and DAC for relations 40
41
Implicit Authorizations When a user creates a table, the system issues an implicit GRANT statement giving that user the CONTROL privilege on the table. The system also issues the GRANT statement to give the privileges to users with SYSADM and DBADM authority. when the user creates a view, the implicit GRANT of CONTROL is issued only if the user has CONTROL on all the base tables used to make the view. The privileges granted on the view are the intersection of the privileges that the user has on the base tables. CS9616 Set 1, Introduction and DAC for relations 41
42
Indirect Privileges Through Packages a package consists of an application program with embedded (static or dynamic) SQL commands. the user who BINDS the package must have all the privileges required to execute these SQL statements. to execute the application defined by the package, where the package has only static SQL statements, a user only needs EXECUTE privilege on the package. such a user may not have all the privileges required by the package, but can access the database this way through the package. dynamic SQL is apparently created at run time and compiled at run time. A user executing a package with dynamic SQL statements must have the privileges for these dynamic SQL statements. CS9616 Set 1, Introduction and DAC for relations 42
43
Storage of Security Information All granted privileges are recorded in system tables. by default these tables have SELECT granted to PUBLIC, but if the database must be kept secret, this can be revoked. some of the tables are: SYSCAT.DBAUTH – database privileges SYSCAT.TABAUTH – table and view privileges SYSCAT.PLANAUTH – package privileges SYSCAT.INDEXAUTH – index privileges CS9616 Set 1, Introduction and DAC for relations 43
44
To see Authorizations in DB2 Suppose Sylvia is the owner of an Employee relation and types: Grant insert on Employee to George Select * from Syscat.tabauth where tabname = ‘Employee’ Result is a table with columns: Grantor, grantee, granteetype, tabschema, tabname, controlauth, alterauth, deleteauth, indexauth, insertauth, selectauth, refauth, updateauth For the row with Sylvia as Grantee, controlauth is Y, all others are G (meaning Y with grant option). For George, all entries are N except for insertauth which is a Y i.e. it is a slightly reformatted access matrix CS9616 Set 1, Introduction and DAC for relations 44
45
Notes/comments I found a note somewhere that warns that if you grant a privilege to an ID which does not currently exist, but is created at a later time, then that ID will get the privilege when it is created If Alice grants to Bob with grant option, and Bob grants to Carol, and then Alice revokes from Bob, Bob loses the privilege even if it was granted also from someone else Carol keeps the privilege The details and the way the concepts interact are very complex. CS9616 Set 1, Introduction and DAC for relations 45
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.