Download presentation
Presentation is loading. Please wait.
Published byMargaret White Modified over 9 years ago
1
William Terzaghi Spring 2014 Bio 398: Topics in Plant Biology
2
COURSE OVERVIEW 1) Understanding how plants work. 2) Understanding how plant biologists work. Method Technology
3
COURSE OVERVIEW 1) Understanding how plants work. 2) Understanding how plant biologists work. Method Technology http://www.nature.com/nature/journal/vaop/ncurrent/full/nature129 14.html
4
COURSE OVERVIEW 1) Understanding how plants work. 2) Understanding how plant biologists work. Method Technology http://www.nature.com/nature/journal/vaop/ncurrent/full/nature129 14.html http://www.cbc.ca/news/technology/older-trees-grow-faster-than- younger-ones-study-finds-1.2499298
5
Plan C We will pick a problem in plant biology and see where it takes us. 1.Biofuels 2.Climate/CO 2 change 3.Stress responses/stress avoidance Structural Biochemical (including C3 vs C4 vs CAM) Other (dormancy, carnivory, etc) 4.Plant products Defense compounds 5.Improving food production Breeding: new traits to pick & ways to find them GMO New crops 6.Biotechnology 7.Phytoremediation 8.Plant movements 9.Plant signaling (including neurobiology)
6
Plan C 1.Pick a problem
7
Plan C 1.Pick a problem 2.Pick some plants to study
8
Plan C 1.Pick a problem 2.Pick some plants to study 3.Design some experiments
9
Plan C 1.Pick a problem 2.Pick some plants to study 3.Design some experiments 4.See where they lead us
10
Plan C 1.Pick a problem 2.Pick some plants to study 3.Design some experiments 4.See where they lead us Grading? Combination of papers and presentations
11
Plan C 1.Pick a problem 2.Pick some plants to study 3.Design some experiments 4.See where they lead us Grading? Combination of papers and presentations Scavenger hunts?
12
Plan C Grading? Combination of papers and presentations First presentation:10 points Research presentation: 10 points Final presentation: 15 points Assignments: 5 points each Poster: 10 points Intermediate report 10 points Final report: 30 points Scavenger hunts?
13
BIO 398- Resource and Policy Information Instructor: Dr. William Terzaghi Office: SLC 363/CSC228 Office hours: MWF 12-1 in CSC228, T 1-2 in SLC 363, Thurs 1-2 in CSC228, or by appointment Phone: (570) 408-4762 Email: terzaghi@wilkes.edu
14
BIO 398 - Resource and Policy Information Instructor: Dr. William Terzaghi Office: SLC 363/CSC228 Office hours: MWF 12-1 in CSC228, T 1-2 in SLC 363, Thurs 1-2 in CSC228, or by appointment Phone: (570) 408-4762 Email: terzaghi@wilkes.edu Course webpage: http://staffweb.wilkes.edu/william.terzaghi/bio398.html
15
Vegetative Plants 3 Parts 1.Leaf 2.Stem 3.Root
16
Vegetative Plants 3 tissue types 1.Dermal 2.Ground 3.Vascular
17
Plant Development Cell division = growth
18
Plant Development Cell division = growth Determination = what cell can become
19
Plant Development Cell division = growth Determination = what cell can become Differentiation = cells become specific types
20
Plant Development Cell division = growth Determination = what cell can become Differentiation = cells become specific types Pattern formation: developing specific structures in specific locations
21
Plant Development Cell division = growth Determination = what cell can become Differentiation = cells become specific types Pattern formation Morphogenesis: organization into tissues & organs
22
Plant Development umbrella term for many processes embryogenesis
23
Plant Development umbrella term for many processes Embryogenesis Seed dormancy and germination
24
Plant Development umbrella term for many processes Embryogenesis Seed dormancy and germination Seedling Morphogenesis
25
Plant Development umbrella term for many processes Embryogenesis Seed dormancy and germination Seedling Morphogenesis Transition to flowering, fruit and seed formation
26
Plant Development umbrella term for many processes Embryogenesis Seed dormancy and germination Seedling Morphogenesis Transition to flowering, fruit and seed formation Many responses to environment
27
Plant Development Umbrella term for many processes Unique features of plant development Cell walls: cells can’t move: Must grow towards/away from signals
28
Plant Development Umbrella term for many processes Unique features of plant development Cell walls: cells can’t move: must grow instead Plasticity: plants develop in response to environment
29
Unique features of plant development Cell walls: cells can’t move Plasticity: plants develop in response to environment Totipotency: most plant cells can form an entire new plant given the correct signals
30
Unique features of plant development Cell walls: cells can’t move Plasticity: plants develop in response to environment Totipotency: most plant cells can form an entire new plant given the correct signals Meristems: plants have perpetually embryonic regions, and can form new ones
31
Unique features of plant development Cell walls: cells can’t move Plasticity: plants develop in response to environment Totipotency: most plant cells can form an entire new plant given the correct signals Meristems: plants have perpetually embryonic regions, and can form new ones No germ line!
32
Unique features of plant development Meristems: plants have perpetually embryonic regions, and can form new ones No germ line! Cells at apical meristem become flowers: allows Lamarckian evolution!
33
Unique features of plant development Meristems: plants have perpetually embryonic regions, and can form new ones No germ line! Cells at apical meristem become flowers: allows Lamarckian evolution! Different parts of the same 2000 year old tree have different DNA & form different gametes
34
Plant Cell Theory 1) All organisms are composed of one or more cells
35
Plant Cell Theory 1) All organisms are composed of one or more cells 2) Cell is smallest living organizational unit
36
Plant Cell Theory 1) All organisms are composed of one or more cells 2) Cell is smallest living organizational unit 3) Cells arise by division of preexisting cells
37
Plant Cells 1) Highly complex and organized
38
Plant Cells 1) Highly complex and organized 2) Metabolism
39
Plant Cells 1) Highly complex and organized 2) Metabolism 3) Reproduction
40
Plant Cells 1) Highly complex and organized 2) Metabolism 3) Reproduction 4) Heredity
41
Plant Cells 1) Highly complex and organized 2) Metabolism 3) Reproduction 4) Heredity 5) Mechanically active
42
Plant Cells 1) Highly complex and organized 2) Metabolism 3) Reproduction 4) Heredity 5) Mechanically active 6) Respond to stimuli
43
Plant Cells 1) Highly complex and organized 2) Metabolism 3) Reproduction 4) Heredity 5) Mechanically active 6) Respond to stimuli 7) Homeostasis
44
Plant Cells 1) Highly complex and organized 2) Metabolism 3) Reproduction 4) Heredity 5) Mechanically active 6) Respond to stimuli 7) Homeostasis 8) Very small
45
Why are cells so small? 1) many things move inside cells by diffusion
46
Why are cells so small? 1) many things move inside cells by diffusion 2)surface/volume ratio
47
Why are cells so small? 1) many things move inside cells by diffusion 2) surface/volume ratio surface area increases more slowly than volume
48
Why are cells so small? 1) many things move inside cells by diffusion 2) surface/volume ratio surface area increases more slowly than volume exchange occurs only at surface eventually have insufficient exchange for survival
49
Plant Cells 1)Cell walls Carbohydrate barrier surrounding cell
50
Plant Cells 1)Cell walls Carbohydrate barrier surrounding cell Protects & gives cell shape
51
Plant Cells 1)Cell walls Carbohydrate barrier surrounding cell Protects & gives cell shape 1˚ wall made first mainly cellulose
52
Plant Cells 1)Cell walls Carbohydrate barrier surrounding cell Protects & gives cell shape 1˚ wall made first mainly cellulose Can stretch!
53
Plant Cells 1)Cell walls Carbohydrate barrier surrounding cell Protects & gives cell shape 1˚ wall made first mainly cellulose Can stretch! 2˚ wall made after growth stops
54
Plant Cells 1)Cell walls Carbohydrate barrier surrounding cell Protects & gives cell shape 1˚ wall made first mainly cellulose Can stretch! 2˚ wall made after growth stops Lignins make it tough
55
Plant Cells 1)Cell walls Carbohydrate barrier surrounding cell Protects & gives cell shape 1˚ wall made first mainly cellulose Can stretch! 2˚ wall made after growth stops Lignins make it tough Problem for "cellulosic Ethanol" from whole plants
56
Plant Cells 1)Cell walls 1˚ wall made first 2˚ wall made after growth stops Lignins make it tough Problem for "cellulosic Ethanol" from whole plants Middle lamella = space between 2 cells
57
Plant Cells 1)Cell walls 1˚ wall made first 2˚ wall made after growth stops Middle lamella = space between 2 cells Plasmodesmata = gaps in walls that link cells
58
Plant Cells Plasmodesmata = gaps in walls that link cells Lined with plasma membrane
59
Plant Cells Plasmodesmata = gaps in walls that link cells Lined with plasma membrane Desmotubule joins ER of both cells
60
Plant Cells Plasmodesmata = gaps in walls that link cells Lined with plasma membrane Desmotubule joins ER of both cells Exclude objects > 1000 Dalton, yet viruses move through them!
61
Types of Organelles 1) Endomembrane System 2) Putative endosymbionts
62
Endomembrane system Common features derived from ER
63
Endomembrane system Common features derived from ER transport is in vesicles
64
Endomembrane system Common features derived from ER transport is in vesicles proteins & lipids are glycosylated
65
Endomembrane system Organelles derived from the ER 1) ER 2) Golgi 3) Vacuoles 4) Plasma Membrane 5) Nuclear Envelope 6) Endosome 7) Oleosomes
66
ER Network of membranes t/out cell 2 types: SER & RER
67
SER tubules that lack ribosomes fns: 1)Lipid syn 2)Steroid syn 3)drug detox 4)storing Ca 2+ 5)Glycogen catabolism
68
RER Flattened membranes studded with ribosomes 1˚ fn = protein synthesis -> ribosomes are making proteins
69
ER SER & RER make new membrane!
70
GOLGI COMPLEX Flattened stacks of membranes made from ER
71
GOLGI COMPLEX Individual, flattened stacks of membranes made from ER Fn: “post office”: collect ER products, process & deliver them Altered in each stack
72
GOLGI COMPLEX Individual, flattened stacks of membranes made from ER Fn: “post office”: collect ER products, process & deliver them Altered in each stack Makes most cell wall carbohydrates!
73
GOLGI COMPLEX Individual, flattened stacks of membranes made from ER Fn: “post office”: collect ER products, process & deliver them Altered in each stack Makes most cell wall carbohydrates! Protein’s address is built in
74
VACUOLES Derived from Golgi; Fns: 1)digestion a) Organelles b) food particles
75
VACUOLES Derived from Golgi; Fns: 1)digestion a) Organelles b) food particles 2) storage
76
VACUOLES Derived from Golgi; Fns: 1) digestion a) Organelles b) food particles 2) storage 3) turgor: push plasma membrane against cell wall
77
VACUOLES Vacuoles are subdivided: lytic vacuoles are distinct from storage vacuoles!
78
Endomembrane system Organelles derived from the ER 1) ER 2) Golgi 3) Vacuoles 4) Plasma Membrane Regulates transport in/out of cell
79
Endomembrane system Organelles derived from the ER 1) ER 2) Golgi 3) Vacuoles 4) Plasma Membrane Regulates transport in/out of cell Lipids form barrier Proteins transport objects & info
80
Endomembrane System 5) Nuclear envelope: regulates transport in/out of nucleus Continuous with ER
81
Endomembrane System 5) Nuclear envelope:regulates transport in/out of nucleus Continuous with ER Transport is only through nuclear pores
82
Endomembrane System 5) Nuclear envelope:regulates transport in/out of nucleus Continuous with ER Transport is only through nuclear pores Need correct signal & receptor for import
83
Endomembrane System 5) Nuclear envelope: regulates transport in/out of nucleus Continuous with ER Transport is only through nuclear pores Need correct signal & receptor for import new one for export
84
Endomembrane System Nucleus: spherical organelle bounded by 2 membranes and filled with chromatin = mix of DNA and protein
85
Endomembrane System Nucleus: spherical organelle bounded by 2 membranes and filled with chromatin fns = information storage & retrieval Ribosome assembly (in nucleolus)
86
Endomembrane System Endosomes: vesicles derived from Golgi or Plasma membrane Fn: sorting materials & recycling receptors
87
Endomembrane System Oleosomes: oil storage bodies derived from SER Surrounded by lipid monolayer!
88
Endomembrane System Oleosomes: oil storage bodies derived from SER Surrounded by lipid monolayer! filled with lipids: no internal hydrophobic effect!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.