Download presentation
Presentation is loading. Please wait.
Published byBathsheba Hodge Modified over 9 years ago
1
Location problems on networks with routing ▪ E Fernández ▪ TGS 2010 ▪ Jarandilla 12-15 Noviembre Arc hub location problems as network design problems with routing Elena Fernández- Dpt EIO-UPC Ivan Contreras- CIRRELT- Montréal Seminario de Geometría Tórica Jarandilla 12-15 de noviembre 2010
2
Location problems on networks with routing ▪ E Fernández ▪ TGS 2010 ▪ Jarandilla 12-15 Noviembre Which set of facilities to open ? Location How to satisfy the customers demands from open facilities ? From which facility does the customer receive service ? Allocation How is service provided ? Routing Are facilities somehow connected ? Routing Which are the possible (or preferable) connections between Network design customers or between customers and facilities ? Decisions in discrete location problems on networks
3
Location problems on networks with routing ▪ E Fernández ▪ TGS 2010 ▪ Jarandilla 12-15 Noviembre where customers obtain service from where flows between pairs of customers are consolidated and rerouted connect customers and facilities Connect customers and facilities Connect facilities between them What are facilities used for? Routing Which are the possible connections ? Network design
4
Location problems on networks with routing ▪ E Fernández ▪ TGS 2010 ▪ Jarandilla 12-15 Noviembre If customers move to facilities to recieve service ⋮ the routing of each customer is trivial Customers receive service from/at facilities
5
Location problems on networks with routing ▪ E Fernández ▪ TGS 2010 ▪ Jarandilla 12-15 Noviembre If several customers are visited in the same route ⋮ the design of the routes may become difficult Customers receive service from facilities
6
Location problems on networks with routing ▪ E Fernández ▪ TGS 2010 ▪ Jarandilla 12-15 Noviembre There exists communication between each pair of customers. Flows are consolidated and re-routed at facilities (which must be connected) Facilities used to reroute flows between pairs of customers HUB LOCATION
7
Location problems on networks with routing ▪ E Fernández ▪ TGS 2010 ▪ Jarandilla 12-15 Noviembre Connection between facilities by means of a tree HUB LOCATION Facilities used to reroute flows between pairs of customers
8
Location problems on networks with routing ▪ E Fernández ▪ TGS 2010 ▪ Jarandilla 12-15 Noviembre G=(V, E) f i : set-up cost for facilities i V d ij : per unit routing cost from i to ji, j V W ij : flow between i and j i, j V MINIMUM TOTAL COST Set-up costs + Flow Routing costs HUB LOCATION TO FIND Network design Hubs are used to consolidate and reroute flow between customers A set of facilities (hubs) to open Subset of edges to connect hubs among them Subset of edges to connect customers to their allocated hubs Location Assignment i j
9
Location problems on networks with routing ▪ E Fernández ▪ TGS 2010 ▪ Jarandilla 12-15 Noviembre i j m k HUB LOCATION: Typical asumptions Transfer between hubs Collection Distribution Discount factors to routing costs Full interconnetion of hubs Paths: i-k-m-j Triangle inequality Hub location problems are NP-hard
10
Location problems on networks with routing ▪ E Fernández ▪ TGS 2010 ▪ Jarandilla 12-15 Noviembre Hub arcs i i j j j Campbell JF, Ernst AT, Krishnamoorthy M (2005a) Hub arc location problems: Part i-introduction and results. Manag Sci 51(10):1540–1555 Campbell JF, Ernst AT, Krishnamoorthy M (2005b) Hub arc location problems: Part ii-formulations and optimal algorithms. Manag Sci 51(10):1556–1571
11
Location problems on networks with routing ▪ E Fernández ▪ TGS 2010 ▪ Jarandilla 12-15 Noviembre Index Hub arc location problems Formulation based on properties of supermodular functions Comparison of formulations Some computational results
12
Location problems on networks with routing ▪ E Fernández ▪ TGS 2010 ▪ Jarandilla 12-15 Noviembre Hub arc location problems G=(V, E) complete undirected graph n=|V|, m=|E|=n(n-1)/2 K={(i, j) V V: there is demand between i y j}; k K commodity i i j q : Maximum (exact) number of hub arcs p : Maximum (exact) number of hub nodes Commodities demand is routed via hub arcs If an arc hub is set-up then hub nodes are also established at both endnodes
13
Location problems on networks with routing ▪ E Fernández ▪ TGS 2010 ▪ Jarandilla 12-15 Noviembre d ij : unit routing cost from i to ji, j V g e : set-up cost for hub arc ee E c u : set-up cost for hub vertex uu V F ek : routing cost for commodity k K via hub arc e=(u,v) k K, e E i i j gege u v i j d ij To find: Hub arcs to set-up Assignment of commodities to hub arcs Such that the overall cost is minimized Hubs set-up cost (both arcs and nodes) + Commodities routing costs F ek = W ij ( d iu + d uv + d vj ) cucu Hub arc location problems
14
Location problems on networks with routing ▪ E Fernández ▪ TGS 2010 ▪ Jarandilla 12-15 Noviembre Hub arc location problems i i j General model: If we allow G to have loops, then we can locate both hub arcs and independent hub nodes.
15
Location problems on networks with routing ▪ E Fernández ▪ TGS 2010 ▪ Jarandilla 12-15 Noviembre q < p(p-1)/2 unfeasible (if exactly p hub nodes must be open) q = p(p-1)/2 y g e =0, e p -hub (nodes) location problem q ≥ min{ m, p(p-1)/2 } the constraint on the number of hub arcs is redundant If c u =0 u, and p ≥ 2q, problem of locating only hub arcs. Hub arc location problems
16
Location problems on networks with routing ▪ E Fernández ▪ TGS 2010 ▪ Jarandilla 12-15 Noviembre Formulation I Variables: |E| + |V| + |E||K|
17
Location problems on networks with routing ▪ E Fernández ▪ TGS 2010 ▪ Jarandilla 12-15 Noviembre Formulation I Extension of UFLP Many variables ( x ek 4-index variables) (|K|+2)(1+|E|) constraints
18
Location problems on networks with routing ▪ E Fernández ▪ TGS 2010 ▪ Jarandilla 12-15 Noviembre Formulation II (based on propertirs of supermodular functions) Hub arc minimization problem Minimization of supermodular function Maximization of submodular functions Nemhauser, Wolsey, Maximizing submodular set functions: formulations and analysis of algorithms, in P. Hansen, ed., Studies on Graphs and Discrete Programming, N-H (1981)
19
Location problems on networks with routing ▪ E Fernández ▪ TGS 2010 ▪ Jarandilla 12-15 Noviembre Supermodular functions Let E be a finite set, and f : P ( E ) ℝ Definition: f is supermodular if f(S T) + f(S T) ≥ f(S) + f(T) S, T E Characterization: f supermodular f(S {e}) - f(S) f(S {e’, e}) - f(S {e’}) Characterization: f supermodular and non-increasing f(T) ≥ f(S) + e T\S [ f(S {e}) - f(S)] S, T E The maximization of supermodular functions is “easy” The minimization of supermodular functions is “difficult”
20
Location problems on networks with routing ▪ E Fernández ▪ TGS 2010 ▪ Jarandilla 12-15 Noviembre For S ⊆ E h k (S) = Min e’ S F e’k assignment cost associated with k K Proposition: h k is supermodular and non-increasing, for all k K Supermodular functions Optimization problem: Find T* such that h k (T*) =Min S ⊆ E h k (S) Find Min k = h k (T*) k ≥ h k (S) + e T*\S e k (S) for all S E Find (z e ) e E, z e {0,1} s.t. Min k k ≥ h k (S) + e S e k (S) z e for all S E Find (z e ) e E, z e {0,1} s.t. Min k k ≥ (Min e’ S F e’k )+ e S (F ek -Min e’ S F e’k ) - z e for all S E Corollary: h k (T) ≥ h k (S) + e T\S e k (S) for all k K, S, T E whereh k (S {e})- h k (S )= (F ek - Min e’ S F e’k ) - (a) - =min {a, 0}
21
Location problems on networks with routing ▪ E Fernández ▪ TGS 2010 ▪ Jarandilla 12-15 Noviembre Formulation II Min k k ≥ (Min e’ S F e’k ) + e S (F ek - Min e’ S F e’k ) - z e for all S E Remark: Even if there is an exponential number of constraints (subsets S) there is a small number of possible values of Min e’ S F e’k. The candidate values are F e h k for e h E. Find (z e ) e E, z e {0,1} s.t. Min k k ≥ F e h k + e S (F ek - F e h k ) - z e for all e h E
22
Location problems on networks with routing ▪ E Fernández ▪ TGS 2010 ▪ Jarandilla 12-15 Noviembre Formulation II (based on propertirs of supermodular functions) f(S) = g(S)+c(V(S))+ k K h k (S) supermodular g(S) = e E g e supermodular ĉ(S) = c(V(S))= u V(S) c u supermodular h k (S) =Min e S F ek supermodular and non-increasing S⊆ E,S⊆ E, Hub arc minimization problem Minimization of supermodular function
23
Location problems on networks with routing ▪ E Fernández ▪ TGS 2010 ▪ Jarandilla 12-15 Noviembre Formulation II |K|+|E|+|V| variables (variables with1-2 indices) (|K|+2)(1+|E|) constraints “Saving” in allocation cost for using additional hub arc e
24
Location problems on networks with routing ▪ E Fernández ▪ TGS 2010 ▪ Jarandilla 12-15 Noviembre Formulation I vs Formulation II |K|+|E|+|V| (|K|+2)(1+|E|) |E||K|+|E|+|V| (|K|+2)(1+|E|) Variables Constraints Theorem: (LP bounds ) v LPF1 =v LPF2 FIFII
25
Location problems on networks with routing ▪ E Fernández ▪ TGS 2010 ▪ Jarandilla 12-15 Noviembre Formulation I vs Formulation II: APset InstanceNatural FormulationSupermodular Formulation |V| LP bound LP % gap Final % gap Time (sec)nodesLP bound LP % gap Final % gap Time (sec)nodes 100.21677085.210.004.801191677085.210.0020.00101 100.51731043.840.002.00571731043.840.009.5053 100.81761582.150.001.00211761582.150.005.8029 200.21885010.800.0040.00131885010.800.001136.0035 200.51940950.330.009.9051940950.330.0090.609 200.81947370.00 3.1001947370.00 17.900 250.21917170.520.00303.40211917170.520.3510800.0032 250.51961650.660.0088.30111961650.660.00811.0013 250.81973870.310.0037.1071973870.310.00258.605 400.21964492.682.3010800.0028memory 400.5200711.450.00 828.700memory 400.8200711.450.00 407.600memory 500.2---10800.00-memory 500.5200436.80.380.2710800.0053memory 500.8201074.020.060.003156.305memory p=3, q=9, Xpress, CPU limit:3 hours g e = ( c u + c v ) coeff, e=(u,v); coeff = 0.15
26
Location problems on networks with routing ▪ E Fernández ▪ TGS 2010 ▪ Jarandilla 12-15 Noviembre Formulation I
27
Location problems on networks with routing ▪ E Fernández ▪ TGS 2010 ▪ Jarandilla 12-15 Noviembre Formulation II Separate Given ¿ k K, h t.q. ? Brute force: |K||E| (O(|V 4 |)
28
Location problems on networks with routing ▪ E Fernández ▪ TGS 2010 ▪ Jarandilla 12-15 Noviembre x 0 Separation problem Given a polyhedron P and a point x*, to identify if x* P. If it does not, to find a valid inequality for P, x 0 such that x*> 0. x* x 0
29
Location problems on networks with routing ▪ E Fernández ▪ TGS 2010 ▪ Jarandilla 12-15 Noviembre Separation of constraints Given to know if there exists k K, h s.t. Proposition: For k given, the maximum of S hk, is attained for h=r k Concave, piecewise linear; with break values F ek (k fixed) First index such that the slope is no longer positive
30
Location problems on networks with routing ▪ E Fernández ▪ TGS 2010 ▪ Jarandilla 12-15 Noviembre Preliminary Results nodesalpha LP %gap Final % gap Times (sec) Nodes LP % gap Final % gap Times (sec) nodes 100.25.2104.81195.2101.0343 100.53.8402573.8400.8833 100.82.1501212.1500.5521 200.20.80040130.8006.6533 200.50.3309.950.3302.469 200.80.0003.100.0001.080 250.20.520303.4210.52011.057 250.50.66088.3110.6609.11711 250.80.31037.170.3104.375 400.22.682.310800282.680923.4124 400.50.000828.700.00062.360 400.80.000407.600.00029.370 500.2--10800-1.2409438.8265 500.50.380.2710800530.380810.5959 500.80.0603156.350.060145.235
31
Location problems on networks with routing ▪ E Fernández ▪ TGS 2010 ▪ Jarandilla 12-15 Noviembre Preliminary Results nodesalphaLP % gap Final % gapTimes(sec)nodes 600.2memory2.1006887.43183 600.5memory1.560183059 600.8memory0.960931.2235 750.2memory1.721.261348374 750.5memory1.17012216105 750.8memory0.9805922.3955 900.2memory0.80030479.695 900.5memory8.418.272129358 900.8memory0.6905822.4533 1000.2memory- -10800 - 1000.5memory0.63027033.755 1000.8memory9.178.813820028
32
Location problems on networks with routing ▪ E Fernández ▪ TGS 2010 ▪ Jarandilla 12-15 Noviembre Arc hub location problems (involve routing decisions) General Problem Two alternative formulacions Minimization of supermodular function Efficient solution of separation problem Promising preliminary results Summary
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.