Download presentation
Presentation is loading. Please wait.
Published byAaliyah MacKenzie Modified over 11 years ago
1
Common Core State Standards for Mathematics: Coherence Grade 3
2
Essential Questions How and why were the Common Core State Standards developed and by whom? What are the 3 shifts in math instruction in the CCSS? Why the need for Coherence? How is Coherence reflected in the classroom? What are the next steps in implementing Coherence?
3
Overview of the Common Core State Standards
4
Rationale for CCSS Declining US competitiveness with other developed countries NAEP performance that is largely flat over the past 40 years in 8th grade Slight improvement on NAEP performance at the 4th grade level Slight decline on NAEP performance at the high school level High rates of college remediation
5
Background of CCSS Initiated by the National Governors Association (NGA) and Council of Chief State School Officers (CCSSO) with the following design principles: Result in College and Career Readiness Based on solid research and practice evidence Fewer, higher (greater DOK), and clearer standards
6
College Math Professors Feel HS Students Today are Not Prepared for College Math
7
What The Disconnect Means for Students Nationwide, many students in two-year and four-year colleges need remediation in math. Remedial classes lower the odds of finishing the degree or program. Need to set the agenda in high school math to prepare more students for postsecondary education and training.
8
The Common Core State Standards Require Three Instructional Shifts in Mathematics Focus: Focus strongly where the standards focus. Coherence: Think across grades and link to major topics. Rigor: In major topics, pursue conceptual understanding, procedural skill and fluency, and application.
9
Shift 2: Coherence The Standards are designed around coherent progressions from grade to grade. Principals and teachers carefully connect the learning across grades so that students can build new understanding onto foundations built in previous years. Teachers can begin to count on deep conceptual understanding of core content and build on it. Each standard is not a new event, but an extension of previous learning.
10
William McCallum on Coherence
11
Coherence: Think Across Grades Example: Fractions The coherence and sequential nature of mathematics dictate the foundational skills that are necessary for the learning of algebra. The most important foundational skill not presently developed appears to be proficiency with fractions (including decimals, percents, and negative fractions). The teaching of fractions must be acknowledged as critically important and improved before an increase in student achievement in algebra can be expected. Final Report of the NMA Panel, 2008
12
12 CCSS Fraction Progression
13
Coherence: Think Across Grades
14
Coherence: Link to Major Topics Within Grades
15
Engaging with the shifts: Coherence Cards In front of you lie a set of colored cards and a large poster. Each colored set of cards represents one theme, such as number lines or properties of operations, and each card has an individual standard printed on it. Your goal as a team is to correctly place the cards within each grade in an accurate progression. The only parameters are that no two of the same color cards will appear in the same grade, and that there will not necessarily be one card in each grade for each progression.
17
Examples of Opportunities for Connections among Standards, Clusters or Domains 3.NF.2 Developing an understanding of fractions as numbers is essential for future work with the number system. It is critical that students at this grade are able to place fractions on a number line diagram and understand them as a related component of their ever - expanding number system. Directions: Solve the following problem. Think about how the problem connects to the standard and how it looks different than what we currently do in the classroom.
19
Examples of Major Within-Grade Dependencies Students must begin work with multiplication and division (3.OA) at or near the very start of the year to allow time for understanding and fluency to develop. Note that area models for products are an important part of this process (3.MD.7). Hence, work on concepts of area (3.MD.5–6) should likely begin at or near the start of the year as well. Directions: Solve the following problem. Think about how the problem connects to the standard and how it looks different than what we currently do in the classroom.
21
Math Shifts What is this shift? Why this shift? OpportunitiesChallenges 2. Coherence: Think across grades Group Discussion
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.