Download presentation
Presentation is loading. Please wait.
Published byJonathan McCoy Modified over 8 years ago
1
Intro to Valvular Disease Valvular Disease
2
Valvular Heart Disease Heart contains Two atrioventricular valves Mitral Tricuspid Two semilunar valves Aortic Pulmonic
3
Valvular Heart Disease Types of valvular heart disease depend on Valve or valves affected Two types of functional alterations Stenosis Regurgitation
4
Valvular Heart Disease Valvular disorders occur in children and adolescents primarily from congenital conditions and in adults from degenerative heart disease
5
Valvular Heart Disease HeartPoint: HeartPoint Gallery http://www.heartcenteronline.com/myheartdr/co mmon/articles.cfm?ARTID=187 Flashcards about Ch 19 NETI KQ- on your own
6
Risk Factors Rheumatic Heart Disease MI Congenital Heart Defects Aging CHF
7
Valvular surgery Heart Surgery Innovations - Google Video 11:22 valves 20 beating heart 20 aortic valve
8
Pathophysiology Stenosis- narrowed valve, increases afterload Regurgitation or insufficiency- increases preload. The heart has to pump same blood **Blood volume and pressures are reduced in front of the affected valve and increased behind the affected valve. This results in heart failure All valvular diseases have a characteristic murmur murmurs
9
Mitral Valve Stenosis
10
Fig. 37-9 Fish mouth
11
Mitral Stenosis Dec. flow into LV LA hypertrophy Pulmonary pressures increase Pulmonary hypertension Dec. CO * early symptom is DOE Later get symptoms of R heart failure A fib is common- anticoagulants Usually secondary to rheumatic fever
20
Mitral Regurgitation Regurg of blood into LA during systole LA dilation and hypertrophy Pulmonary congestion RV failure LV dilation and hypertrophy-to accommodate inc. preload and dec CO
21
Mitral Regurgitation
23
MitraClip Repair MitraClip 3D Animation
24
Mitral Valve Prolapse A type of mitral insufficiency Usually asymptomatic- click murmur May get atypical chest pain related to fatigue Tachydysrhythmias may develop Risk for endocarditis may be increased
25
Mitral Valve Prolapse Fig. 37-10
27
Mitral Valve Prolapse Usually benign, but serious complications can occur Mitral valve regurgitation Infective endocarditis Sudden death Cerebral ischemia
28
Mitral Valve Prolapse Clinical manifestations Most patients asymptomatic for life Murmur from insufficiency that gets more intense through systole Late or holosystolic murmur Clicks mid to late systole that may be constant or vary beat to beat
29
Mitral Valve Prolapse Dysrhythmias Paroxysmal supraventricular tachycardia Ventricular tachycardia Palpitations Lightheadedness Dizziness
30
Mitral Valve Prolapse May or may not be present with chest pain If pain occurs, episodes then to occur in clusters, especially during stress Pain may be accompanied by dyspnea, palpitations, and syncope Does not respond to antianginal treatment
31
A&P 1 Heart part 1 Midsytolic click & late systolic murmur
32
MVP video Infections & Injuries of the Heart Live Search Videos: mitral valve prolapse
33
Aortic Stenosis Minimally Invasive Aortic Heart Valve Replacement
34
Aortic Stenosis
35
Increase in afterload Reduced CO LV hypertrophy Incomplete emptying of LA Pulmonary congestion RV strain
38
Symptoms S yncope A ngina D yspnea This triad reflects left ventricular failure
39
Aortic Stenosis May be asymptomatic for many years due to compensation DOE, angina, and exertional syncope are classic symptoms Later get signs of R heart failure Untreated-poor prognosis- 10- 20%sudden cardiac death
40
Aortic Valve Stenosis Poor prognosis when experiencing symptoms and valve obstruction is not relieved Nitroglycerin is contraindicated because it reduces preload
41
New Approach- Percutaneous AVR
42
Aortic Regurgitation
43
Get increased preoad- 60% of SV can be regurgitated Characteristic water hammer pulse Regurgitation of blood into the LV LV dilation and hypertrophy Dec. CO Echocardiography
44
Aortic Valve Regurgitation Clinical manifestations Sudden manifestations of cardiovascular collapse Left ventricle exposed to aortic pressure during diastole Weakness
45
Aortic Valve Regurgitation Severe dyspnea Chest pain Hypotension Constitutes a medical emergency
46
Water Hammer pulse Pulse, water hammer: A jerky pulse that is full and then collapses because of aortic insufficiency (when blood ejected into the aorta regurgitates back through the aortic valve into the left ventricle ). Also called a Corrigan pulse or a cannonball, collapsing, pistol-shot, or trip-hammer pulse.
48
Tricuspid and Pulmonic Valve Disorders Result in R side heart failure
49
Diagnostic Tests Echo- assess valve motion and chamber size CXR EKG Cardiac cath- get pressures
50
Collaborative Care Drug therapy Digitalis Diuretics Antidysrhythmics -Blockers Anticoagulants
51
Medications Like Heart Failure ACE, Dig Diuretics Vasodilators Beta blockers Anticoagulants *Prophylactic antibiotics
52
Medical/ Surgical Treatment Percutaneous balloon valvuloplasty Surgery Open commissurotomy- open stenotic valves Annuloplasty- can be used for both Valve Replacement Mechanical-need anticoagulant Biologic-only last about 15 years Ross Procedure
53
Collaborative Therapy Surgical therapy for valve repair or replacement Valve repair is typically the surgical procedure of choice Valvular replacement may be required for certain patients
54
Valve Replacement Surgery MedlinePlus: Interactive Health Tutorials
57
Ross Procedure
58
This is an excised porcine bioprosthesis. The main advantage of a bioprosthesis is the lack of need for continued anticoagulation. The drawback of this type of prosthetic heart valve is the limited lifespan, on average from 5 to 10 years (but sometimes shorter) because of wear and calcification.
59
This is a mechanical valve prosthesis of the more modern tilting disk variety (for the mitral valve). Such mechanical prostheses will last indefinitely from a structural standpoint, but the patient requires continuing anticoagulation because of the exposed non- biologic surfaces.
61
Nursing Diagnoses Activity intolerance Excess fluid volume Decreased cardiac output Ineffective therapeutic regimen management
62
What Is New? Surgeons are exploring heart valve replacement without the need for open heart surgery. Typically, diseased or defective valves are replaced with an artificial valve or a tissue valve (from a pig or cow). A new, less invasive procedure, known as percutaneous transcatheter heart valve implantation, involves the use of balloon catheters and large stents introduced through a puncture in the skin (in the groin area, near the femoral vein). The new heart valve is transported via the stent to the site, where the stent is then expanded to implant the valve. For patients not able to undergo open-heart surgery, due to age and/or physical condition, percutaneous heart valve implantation may impact significantly on survival and quality of life.
63
New Approach to Valvular Surgery
65
Case study http://edcenter.med.cornell.edu/Pathophysiology_Case s/96-97_Pathophysiology_Cases/96-97Case_04.html
66
New Cont. A number of new technologies are being explored to allow patients who formerly would need an open-heart surgery to have a less- invasive procedure. For instance, the use of a tiny metallic clip is being studied for the treatment of mitral regurgitation to help the valve close properly.
67
Cont. Though they may last a lifetime for older patients, younger patients may need several replacement procedures over time. Therefore, one focus of research is to create longer-lasting replacement valves, particularly for patients with congenital heart disease. Two areas of research have shown potential toward this goal: stem cell research and the use of endothelial cells.
68
Cardiomyopathy Condition is which a ventricle has become enlarged, thickened or stiffened. As a result heart’s ability as a pump is reduced
69
Fig. 37-12
70
Cardiomyopathy Primary-idiopathic Secondary Ischemia- from CAD infectious disease exposure to toxins-alcohol, cocaine Metabolic disorders Nutritional deficiencies Pregnancy
71
3 Types of Cardiomyopathy Dilated Hypertrophic Restrictive
72
Fig. 37-13
73
Pathophysiology Dilated Most common- heart failure in 25-40% Cocaine and alcohol abuse Chemotherapy, pregnancy Hypertension Genetic * Heart chamber dilate and contraction is impaired and get dec. EF% *Dysrhythmias are common- SVT Afib and VT Prognosis poor-need transplant
74
This very large heart has a circular shape because all of the chambers are dilated. It felt very flabby, and the myocardium was poorly contractile. This is an example of a cardiomyopathy.
75
Normal weight 350 gms now 700 gms
77
Pathophysiology Hypertrophic-HCM Genetic Also known as IHSS or HOCM Get hypertrophy of the ventricular mass and impairs ventricular filling and CO Symptoms develop during or after physical activity Sudden cardiac death may be first symptom Symptoms are dyspnea, angina and syncope
78
HCM Patho 1. Massive ventricular hypertrophy 2. Rapid, forceful contraction of the LV 3. Impaired relaxation or diastole 4. Obstruction to aortic outflow Primary defect is diastolic filling **HCM most common cause of SCD in young adulthood
82
There is marked left ventricular hypertrophy, with asymmetric bulging of a very large interventricular septum into the left ventricular chamber. This is hypertrophic cardiomyopathy. About half of these cases are genetic. Both children and adults can be affected, and sudden death can occur.
85
HCM- Symptoms Dyspnea Fatigue- dec. CO Angina Syncope S4 and systolic murmur
86
Hypertrophic Diagnostics Echo- TEE Heart Cath
87
Treatment of HOCM Live Search Videos: cardiomyopathy PTSMA- alcohol induced percutaneous trans luminal septal myocardial ablation - inject alcohol into small branch of LAD which causes ischemia and MI of septal wall. (Grey’s Anatomy episode relief of heart failure)
88
Interventions Goal- improve vent filling and relieve LV outflow obstruction Beta blockers- metoprolol Calcium channel blockers Dig- only for A-fib if present Anti-arrhythmics- amiodorone or sotalol ICD- to dec. risk of sudden death AV pacing
89
Surgical Treatment Ventriculomyotomy and myomectomy- incising the septum muscle and removing some of the hypertrophied muscle
90
Nursing Relieve symptoms Prevent complications Provide pysch and emotional support Teaching- Avoid strenuous exercise and dehydration Avoid anything increasing the SVR (afterload) makes obstruction worse If chest pain- rest and elevation of feet for venous return Avoid vasodilators like nitroglycerine- decrease venous return to the heart
91
Pathophysiology Restrictive Least common Rigid ventricular walls that impair filling Contraction and EF normal Signs of CHF Prognosis-poor
93
Diagnostics Echo-wall motion and EF EKG CXR Hemodynamics Perfusion scan Cardiac cath Myocardial biopsy
95
Medications Same as for heart failure except for hypertrophic
96
Treatment Surgery Vad-bridge to transplant Heart Transplant Myloplasty ICD- antiarrhythmics are negative inotropes Dual chamber pacemaker Hypertrophic- excision of ventricular septum- myotomy, inject denatured alcohol in coronary artery that feeds the top portion of septum.
97
Heart transplant virtual transplant
101
Nursing Diagnoses Decreased Cardiac Output Fatigue Ineffective Breathing Pattern Fear Ineffective Role Performance Anticipatory grieving
102
Priority Question # 29 During the initial post-operative assessment of a patient who has just transferred to the post- anesthesia care unit after repair of an abdominal aortic aneruysm all of these data are obtained. Which has the most immediate implications for the client’s care? A. The arterial line indicates a blood pressure of 190/112. B. The monitor shows sinus rhythm with frequent PAC’s. C. The client does not respond to verbal stimulation. D. The client’s urine output is 100ml of amber urine.
103
Priority Question #30 It is the manager of a cardiac surgery unit’s job to develop a standardized care plan for the post-operative care of client having cardiac surgery. Which of these nursing activities included in the care plan will need to be done by an RN? A. Remove chest and leg dressings on the second post- operative day and clean the incisions with antibacterial swabs. B. Reinforce patient and family teaching about the need to deep breathe and cough at least every 2 hours while awake. C. Develop individual plan for discharge teaching based on discharge medications and needed lifestyle changes. D. Administer oral analgesisc medications as needed prior to assisting patient out of bed on first post-operative day.
104
Priority Question # 25 These clients present to the ER complaining of acute abdominal pain. Prioritize them in order of severity. A. A 35 year old male complaining of severe, intermittent cramps with three episodes of watery diarrhea, 2 hours after eating. B. An 11 year old boy with a low-grade fever, left lower quadrant tenderness, nausea, and anorexia for the past 2 days. C. A 40 year old female with moderate left upper quadrant pain, vomiting small amounts of yellow bile, and worsening symptoms over the past week. D. A 56 year old male with a pulsating abdominal mass and sudden onset of pressure-like pain in the abdomen and flank within the past hour.
105
Case study 15 Ms. C. 81y/o admitted to CCU with SOB. She has a hx of mitral valve regurgitation with left ventricular enlargement. She received 100mg lasix IV in ER and her dyspnea improved. She has O2 at 3L/min. She has crackles bibasilar and monitor is SR rate 94-96 with occ. PVC’s. The only med ordered is MSO4 2-4mg IV as needed for chest pain or dyspnea. As you go to assess her you find her in bed at 60 degree angle. She is pale, has circumoral cyanosis and respirations are rapid and labored.
106
Question 1 What action should you take first? 1.Listen to breath sounds 2.Ask when the dyspnea started 3.Increase her O2 to 6L minute 4.Raise the HOB to 75-85 degrees
107
Case Study 15- #2 Which one of these complications are you most concerned about, based on your assessment? 1. Pulmonary edema 2. Cor pulmonale 3. Myocardial infarction 4. Pulmonary embolus
108
#3 Which action will you take next? 1. Call the physician about client’s condition. 2. Place client on a non-rebreather mask with FiO2 at 95%. 3. Assist client to cough and deep breathe. 4. Administer ordered morphine sulfate 2mg IV.
109
#4 What additional assessment data are most important to obtain at this time? 1. Skin color and capillary refill 2. Orientation and pupil reaction to light 3. Heart sounds and PMI 4. Blood pressure and apical pulse
110
#5 Client’s B/P is 98/52 and AP is 116 and irregular in ST rate 110-120 with frequent multifocal PVC’s. You call the physician and receive these orders. Which one should be done first? 1. Obtain serum dig level 2. Give furosemide 100mg. IV 3. Check blood potassium level 4. Insert #16 french foley catheter
111
#6 Which order could be assigned to an LVN? 1. Obtain serum digoxin level 2. Give furosemide 100mg. IV 3. Check blood potassium level 4. Insert #16 french foley catheter
112
#7 While you are waiting for the the potassium level, you give morphine sulfate 2mg IV to the the client. A new graduate asks why you are giving her the morphine. What is the best response? 1. It will help prevent any chest pain from occurring. 2. It will decrease her respiratory rate. 3. It will make her more comfortable if she has to be intubated. 4. It will decrease venous return to her heart.
113
#8 Her K is 3.1. the physician orders KCL 20meq. IV. How will you administer it. 1. Utilize a syringe pump to infuse the KCL over 10 minutes. 2. Dilute the KCL in 100 ml of D5W and infuse over 1 hour. 3. Use a 5ml syringe and push the KCL over at least 1 minute. 4. Add the KCL to 1 liter of D5W and administer over 8 hours.
114
#9 After you have infused the KCL, you give the lasix. Which of these nursing actions will be most useful in evaluating whether the lasix is having the desired effect? 1. Obtain the client’s daily weight 2. Measure the hourly urine output 3. Monitor blood pressure 4. Assess the lung sounds
115
#10 The physician orders a natrecor 100mcg IV bolus and an infusion of 0.5 mcg/ min. Which assessment data is most important to monitor during the infusion? 1. Lung sounds 2. Heart rate 3. Blood pressure 4. Peripheral edema
116
#11 Which nurse should be assigned care for this client? 1. A float RN who has worked on CCU step down for 9 years and has floated before to CCU 2. An RN from a staffing agency who has 5 years CCU experience and is orienting to your CCU today 3. A CCU RN who is already assigned to care for a newly admitted client with chest trauma 4. The new graduate RN who needs more experience in caring for client with left ventricular failure.
117
#12 Which information would be important to report to the physician? 1. Crackles and oxygen saturation 2. Atrial fibrillation and fuzzy vision 3. Apical murmur and pulse rate 4. Peripheral edema and weight
118
#13 All meds are scheduled for 9 AM. Which would you hold until you discuss it with the physician? Furosemide 40mg po bid Ecotrin 81mg po daily KCL 10meq three times a day Captopril 6.25mg po three times a day Lanoxin.125mg po every other day
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.