Download presentation
Presentation is loading. Please wait.
Published byWesley Doyle Modified over 8 years ago
1
start
2
Calculations for the electronic transport in molecular nanostructures Gotthard Seifert Institut für Physikalische Chemie und Elektrochemie Technische Universität Dresden
3
Greens-Function Method Calculation of Transport Properties in molecular Systems Green‘s Function G(E) S,H – Overlap- and Hamilton Matrices Model: Molecule (M) and two contacts (α, β) Calculation of H and S matrices Aldo di Carlo!
4
LCAO Ansatz Atomic Orbitals - AO Slater Type Orbitals - STO
5
Hamilton matrix Overlap matrix Density-Functional based „tight binding“ DF-TB
6
- electron density - magnetization density Density fluctuations: Total Energy in DFT - E DFT
7
Expansion of E DFT around n=n 0, μ=0
8
Approximations: Minimal (valence) basis in LCAO ansatz Neglect of pseudopotential terms in h 0 μν 2-center approximation -Mulliken gross population at j 2nd order approximation in energy
9
Cancellation of „double counting terms“ E B /eV R/a B U(R jk ) E B - U(R jk ) Li 2 - dimer Short range repulsive energy U(R jk )
10
Approximation for magnetization density
11
Energy :
12
Hamiltonian: : Self Consistent Charge method SCC-DFTB
13
with Γ α - Spectral functions of the Selfenergy-operators Transmission coefficient T(E)
14
Electronic Current – I Keldysh formalism Contact scattering functions Scattering function Inelastic processes (e-e, e-p intereaction) Non-equilibrium Green‘s functions
15
External bias – V Modification of the Hamiltonian matrix elements Calculation of I-V curves
16
Application ∞ Examples
17
Nanotubes of Carbon S. Iijima Nature 354 (1991) 56 ~1nm~ μm Single-wall Nanotubes – SWNT‘s
18
(10,0) zig-zag tube10-10 arm chair tube
19
Electronic Structure of Nanotubes Band-structure graphene monolayer k Rolling „Zone folding“
20
zig-zag tube (n,0) mod(n,3)=0mod(n,3)≠0
21
arm chair tube (n,n)
22
Functionalization of Carbon Nanotubes ? Graphite > Lamellar intercalation: > Lamellar covalent: O, F, S Fluorination Li, Na, K, Rb; Cl, Br, I
23
2C graphite + F 2 2CF sp 2 -C graphite sp 3 -C Fluorination F F
24
Carbon Nanotubes fluorination 2C + F 2 2CF 2C+1/2F 2 C 2 F
26
Decoration pattern – no „frustration“!
27
C 2 F – fluorine decoration pattern n,0 F Ethylen - like
28
C 2 F – fluorine decoration pattern Ethylen - like
29
EFEF Density-of-States 10,0 C 2 F NT 10,0 CNT Large gap
30
C 2 F – fluorine decoration pattern n,0 F trans-polyacetylen – like helical C C ∞
31
C 2 F – fluorine decoration pattern Trans-polyacetylen – like helical C C ∞
32
10,0 C 2 F NT Density-of-States energy/eV Density-of-States small gap
33
projected Density-of-States
34
C 2 F – fluorine decoration pattern cis-polyacetylen – like chain CC ∞
35
Density-of-States 10,0 C 2 F NT no gap
37
Transmission 10,0 C 2 F NanoTubes cis-polyacetylen – like chain ethylen - like
38
Transmission as function of coverage C 2 F (10,0) Nanotube cis-polyacetylen – like chain
39
trans-Polyacetylene
40
C 2 F (10,10) Nanotube chain (10,10) Nanotube
42
(9,0) Nanotube
43
9,0 C 2 F NT ring HOMO –LUMO „aromatic“ π-states
45
Fluorine Carbon
47
Outlook/Problems ->Contacts – Molecule interaction -> electron-phonon interaction -> electron-electron interaction? -> non-adiabatic description -> Applications.
48
Thanks Aldo di Carlo (Rome) Thomas Niehaus (Paderborn) Nitesh Ranjan (Dresden)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.