Presentation is loading. Please wait.

Presentation is loading. Please wait.

Start. Calculations for the electronic transport in molecular nanostructures Gotthard Seifert Institut für Physikalische Chemie und Elektrochemie Technische.

Similar presentations


Presentation on theme: "Start. Calculations for the electronic transport in molecular nanostructures Gotthard Seifert Institut für Physikalische Chemie und Elektrochemie Technische."— Presentation transcript:

1 start

2 Calculations for the electronic transport in molecular nanostructures Gotthard Seifert Institut für Physikalische Chemie und Elektrochemie Technische Universität Dresden

3 Greens-Function Method Calculation of Transport Properties in molecular Systems Green‘s Function G(E) S,H – Overlap- and Hamilton Matrices Model: Molecule (M) and two contacts (α, β) Calculation of H and S matrices Aldo di Carlo!

4 LCAO Ansatz Atomic Orbitals - AO Slater Type Orbitals - STO

5 Hamilton matrix Overlap matrix Density-Functional based „tight binding“ DF-TB

6 - electron density - magnetization density Density fluctuations: Total Energy in DFT - E DFT

7 Expansion of E DFT around n=n 0, μ=0

8 Approximations: Minimal (valence) basis in LCAO ansatz Neglect of pseudopotential terms in h 0 μν  2-center approximation -Mulliken gross population at j 2nd order approximation in energy

9 Cancellation of „double counting terms“ E B /eV R/a B U(R jk ) E B - U(R jk ) Li 2 - dimer Short range repulsive energy U(R jk )

10 Approximation for magnetization density

11 Energy :

12 Hamiltonian: : Self Consistent Charge method SCC-DFTB

13 with Γ α - Spectral functions of the Selfenergy-operators Transmission coefficient T(E)

14 Electronic Current – I Keldysh formalism Contact scattering functions Scattering function Inelastic processes (e-e, e-p intereaction) Non-equilibrium Green‘s functions

15 External bias – V Modification of the Hamiltonian matrix elements Calculation of I-V curves

16 Application ∞ Examples

17 Nanotubes of Carbon S. Iijima Nature 354 (1991) 56 ~1nm~ μm Single-wall Nanotubes – SWNT‘s

18 (10,0) zig-zag tube10-10 arm chair tube

19 Electronic Structure of Nanotubes Band-structure graphene monolayer k  Rolling „Zone folding“

20 zig-zag tube (n,0) mod(n,3)=0mod(n,3)≠0

21 arm chair tube (n,n)

22 Functionalization of Carbon Nanotubes ? Graphite > Lamellar intercalation: > Lamellar covalent: O, F, S Fluorination Li, Na, K, Rb; Cl, Br, I

23 2C graphite + F 2  2CF sp 2 -C graphite  sp 3 -C Fluorination F F

24 Carbon Nanotubes fluorination 2C + F 2  2CF 2C+1/2F 2  C 2 F

25

26 Decoration pattern – no „frustration“!

27 C 2 F – fluorine decoration pattern n,0 F Ethylen - like

28 C 2 F – fluorine decoration pattern Ethylen - like

29 EFEF Density-of-States 10,0 C 2 F NT 10,0 CNT Large gap

30 C 2 F – fluorine decoration pattern n,0 F trans-polyacetylen – like helical C C ∞

31 C 2 F – fluorine decoration pattern Trans-polyacetylen – like helical C C ∞

32 10,0 C 2 F NT Density-of-States energy/eV Density-of-States small gap

33 projected Density-of-States

34 C 2 F – fluorine decoration pattern cis-polyacetylen – like chain CC ∞

35 Density-of-States 10,0 C 2 F NT no gap

36

37 Transmission 10,0 C 2 F NanoTubes cis-polyacetylen – like chain ethylen - like

38 Transmission as function of coverage C 2 F (10,0) Nanotube cis-polyacetylen – like chain

39 trans-Polyacetylene

40 C 2 F (10,10) Nanotube chain (10,10) Nanotube

41

42 (9,0) Nanotube

43 9,0 C 2 F NT ring HOMO –LUMO „aromatic“ π-states

44

45 Fluorine Carbon

46

47 Outlook/Problems ->Contacts – Molecule interaction -> electron-phonon interaction -> electron-electron interaction? -> non-adiabatic description -> Applications.

48 Thanks Aldo di Carlo (Rome) Thomas Niehaus (Paderborn) Nitesh Ranjan (Dresden)


Download ppt "Start. Calculations for the electronic transport in molecular nanostructures Gotthard Seifert Institut für Physikalische Chemie und Elektrochemie Technische."

Similar presentations


Ads by Google