Download presentation
Presentation is loading. Please wait.
Published byLee Denis Dorsey Modified over 9 years ago
1
flysun@must.edu.tw 3D Modeling: Surface Reconstruction and Surface Simplification 曾俊霖 明新科技大學 資訊工程系 2007/11/15 國立新竹教育大學資科所 / 明新科技大學資工系
2
3D Modeling What is 3D Modeling? ◦ 3D modeling is the process of developing a mathematical, wireframe representation of any three- dimensional object (either inanimate or living) via specialized software. Why 3D Modeling? ◦ Virtual Reality is springing up. ◦ 3D is friendlier than 2D. ◦ In the future See a movie 2007/11/15 國立新竹教育大學資科所 / 明新科技大學資工系 2
3
3D Modeling How to model a 3D object? ◦ Sequential Engineering ( 順向工程 ) Creating an inexistent object. Using 3D modeling softwares. 3D Studio Max, Maya, … ◦ Reverse Engineering( 逆向工程 ) Creating an existent object. Using production procedure of Reverse Engineering 2007/11/15 國立新竹教育大學資科所 / 明新科技大學資工系 3
4
2007/11/15 國立新竹教育大學資科所 / 明新科技大學資工系 4 3D( 影像 / 幾何 ) 擷取編輯系統 虛擬實境開 發應用 / 軟體 虛擬實境顯示融 入操控模擬系統 Multimedia Animation 3D CAD Concave/Immersive Studio/SDK OFF-Line CD ROM /Virtual ShowRoom Mobile ON-Line Server/Collosseum Mobile Visualizer Configurator Support Demonstrator Planner Integrated Digital Content 3D Studio MAX Maya LightWave trueSpace ProE SolidWork SolidEdge AutoCAD ArchiCAD Flash Director 資料庫 WEB ORACLE ASPHTMLXMLLinuxJAVAVBVC++ ActiveX MS Agent MovMP3AviPPM
5
Reverse Engineering Production procedure (Step 1) ◦ Creation of a digital object A point-cloud model Using a 3D scanner 2007/11/15 國立新竹教育大學資科所 / 明新科技大學資工系 5
6
Reverse Engineering Production procedure (Step 2) ◦ Creation of a meshed model Using surface reconstruction method 2007/11/15 國立新竹教育大學資科所 / 明新科技大學資工系 6
7
Surface Reconstruction Generating the triangles from a point- cloud model 2007/11/15 國立新竹教育大學資科所 / 明新科技大學資工系 7
8
Surface Reconstruction Problems ◦ Which two points should be formed an edge? ◦ How to decrease the time cost of generating a meshed model? 2007/11/15 國立新竹教育大學資科所 / 明新科技大學資工系 8
9
Surface Reconstruction Key steps ◦ Localized sampling Fixed-sized sampling approach Alpha ball (sampling size determined by users) 2007/11/15 國立新竹教育大學資科所 / 明新科技大學資工系 9 α=∞α=∞ α =0
10
Surface Reconstruction Key steps ◦ Localized sampling Fixed-sized sampling approach LVC (size determined by whole model points) Proposed by Jong and Juin at CYCU in 2005 γ = γ m + 3s γ m is the average of the distance from the closest point 2007/11/15 國立新竹教育大學資科所 / 明新科技大學資工系 10
11
Surface Reconstruction Key steps ◦ Localized sampling Fixed-sized sampling approach LVC (size determined by whole model points) Problem: some undesired edges are generated. 2007/11/15 國立新竹教育大學資科所 / 明新科技大學資工系 11
12
Surface Reconstruction Key steps ◦ Localized sampling Adaptive-sized sampling approach Projected-based approach Proposed by Gopi in 2002 Using the nearest point to determine the sampling region r= μ x m Dense points are necessary. Small holes might be generated. 2007/11/15 國立新竹教育大學資科所 / 明新科技大學資工系 12
13
Surface Reconstruction Key steps ◦ Localized sampling Adaptive-sized sampling approach Shape-based approach Proposed by Jong and Juin Summit to JCST(SCI Journal) - 2 nd revised Using DSO(Discrete Shape Operator) to determine the sampling regions 2007/11/15 國立新竹教育大學資科所 / 明新科技大學資工系 13
14
Surface Reconstruction Key steps ◦ Sampling points pruning Points lying on different surfaces 2007/11/15 國立新竹教育大學資科所 / 明新科技大學資工系 14
15
Surface Reconstruction Key steps ◦ Sampling points pruning Points lying on different surfaces 2007/11/15 國立新竹教育大學資科所 / 明新科技大學資工系 15
16
Surface Reconstruction Current Results 2007/11/15 國立新竹教育大學資科所 / 明新科技大學資工系 16
17
Surface Reconstruction Another problem ◦ The reconstruction of high-variation surfaces fails easily. Solution Extracting high-variation surfaces before reconstructing ◦ The number of points is too many Increasing of computation cost Increasing of storage cost Solution Removing some irrelevant points and triangles Using Surface Simplification Method 2007/11/15 國立新竹教育大學資科所 / 明新科技大學資工系 17
18
Surface Simplification Reduce the points and triangles Problems ◦ Which points, edges or triangles should be removed? 2007/11/15 國立新竹教育大學資科所 / 明新科技大學資工系 18
19
Surface Simplification Related Methods ◦ Vertex Removal removing a vertex from 3D model, along with its adjacent edges and triangles, and retriangulating the resulting hole. Only for manifold surface 2007/11/15 國立新竹教育大學資科所 / 明新科技大學資工系 19
20
Surface Simplification Related Method ◦ Vertex Clustering It cannot maintain the quality. 2007/11/15 國立新竹教育大學資科所 / 明新科技大學資工系 20
21
Surface Simplification Related Methods ◦ Edge Collapse Edge collapse can contract an edge to a single vertex. This approach can be used for manifold and non-manifold models, but can close holes in the model. 2007/11/15 國立新竹教育大學資科所 / 明新科技大學資工系 21
22
Surface Simplification Related Methods ◦ Vertex-Pair Contraction Using QEM(Quadric Error Metric) to determine the rank of vertex-pair contraction 2007/11/15 國立新竹教育大學資科所 / 明新科技大學資工系 22
23
Surface Simplification Related Methods ◦ Multiphase Approach Combining the uniform-clustering method and vertex-pair contraction For large-size models ◦ User-Guided Simplification This method aims to overcome the problem of vertex-pair contraction to retain the object features. Retained features determined by users 2007/11/15 國立新竹教育大學資科所 / 明新科技大學資工系 23
24
Surface Simplification Our approach ◦ Using Shape Operator to retain the object features automatically 2007/11/15 國立新竹教育大學資科所 / 明新科技大學資工系 24
25
Surface Simplification Shape Operator ◦ Merge curvature and Torsion 2007/11/15 國立新竹教育大學資科所 / 明新科技大學資工系 25
26
Surface Simplification Vertex-Pair Contraction vs our approach 2007/11/15 國立新竹教育大學資科所 / 明新科技大學資工系 26
27
Feature Extraction Extracting features before surface reconstruction ◦ It can avoid the failure of reconstruction of high-variation surfaces Extracting features before surface simplification ◦ It can effectively retain the features of a simplified model. 2007/11/15 國立新竹教育大學資科所 / 明新科技大學資工系 27
28
Feature Extraction Correlation ellipsoid 2007/11/15 國立新竹教育大學資科所 / 明新科技大學資工系 28
29
Feature Extraction Multi-scale feature extraction 2007/11/15 國立新竹教育大學資科所 / 明新科技大學資工系 29
30
Feature Extraction Time cost is very high. Low-cost feature extraction method is necessary ◦ Using DSO to extract high-variation surfaces 2007/11/15 國立新竹教育大學資科所 / 明新科技大學資工系 30
31
Feature Extraction For point-based models 2007/11/15 國立新竹教育大學資科所 / 明新科技大學資工系 31
32
Feature Extraction For meshed models ◦ 1-ring neighbors 2007/11/15 國立新竹教育大學資科所 / 明新科技大學資工系 32
33
Feature Extraction Point-based models 2007/11/15 國立新竹教育大學資科所 / 明新科技大學資工系 33
34
Feature Extraction Meshed models 2007/11/15 國立新竹教育大學資科所 / 明新科技大學資工系 34
35
Computer Graphics in the Future A movie generated by NTT in Japan ◦ NTT Docomo -Vision2010 2003~2010 movie ◦ NTT Docomo -Vision2010 198x~201x movie 2007/11/15 國立新竹教育大學資科所 / 明新科技大學資工系 35
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.