Presentation is loading. Please wait.

Presentation is loading. Please wait.

SECOND (PLANAR) MOMENTS AND THEIR APPLICATIONS IN SPECTROSCOPY Robert K. Bohn 1, John A. Montgomery, Jr. 2, H. Harvey Michels 2, Jason Byrd 2 1. Univ.

Similar presentations


Presentation on theme: "SECOND (PLANAR) MOMENTS AND THEIR APPLICATIONS IN SPECTROSCOPY Robert K. Bohn 1, John A. Montgomery, Jr. 2, H. Harvey Michels 2, Jason Byrd 2 1. Univ."— Presentation transcript:

1 SECOND (PLANAR) MOMENTS AND THEIR APPLICATIONS IN SPECTROSCOPY Robert K. Bohn 1, John A. Montgomery, Jr. 2, H. Harvey Michels 2, Jason Byrd 2 1. Univ. of Connecticut, Dept. of Chemistry 2. Univ. of Connecticut, Dept. of Physics. WH03 June 19, 2013

2 Second Moments and Applications 0. Joke 1. 2 nd moment definitions 2. Structure relationships from 2 nd moments vs. rotational constants 3. Number of independent parameters from isotopologs 4. 2 nd moments and scaling 5. -CH 2 -, -CH 3 groups: standard values and applications 6. Isopropyl groups: standard values and applications 7. Phenyl groups: standard values and applications 8. -CF 2 -, -CF 3 groups: standard values and applications

3 Second Moments J. Kraitchman, Am. J. of Phys. 21 (1953) 17 Moment of inertia: I a =  m i (b i 2 + c i 2 ), etc. Sum of mass times distance from the a axis squared, I a < I b < I c Rotational constant: A(s -1 ) = h / (8  2 I a ), A(MHz) = 505379.05/I a (uÅ 2 ), etc., for B and C Second moment: P aa = (I b + I c – I a )/2 =  m i a i 2, etc. for P bb and P cc. Sum of mass times distance along the a axis (or from the bc plane) squared Inertial defect:  = I c – I a – I b = -2 P cc (0 for planar molecule)

4 A 6097.201 6061.41 3876.798 3885.0 4226.363 4265.363 B 1957.506 2077.557 1557.793 1623.354 1551.864 1610.575 C 1570.705 1650.531 1237.498 1276.971 1244.250 1277.806 P aa 248.52 233.04 301.22 288.50 306.13 295.41 P bb 73.23 73.16 107.16 107.26 100.05 100.10 P cc 9.65 10.22 23.20 22.82 19.53 18.38 a b

5 Table 4.Rotational constants and second moments of Cyclopropyl Benzene and its 13 C Isotopologs. Rot.Const.Parent 13 C 1 13 C 2 13 C 6 13 C 7 13 C 3 13 C 5 13 C 4 13 C 8/9 A/MHz4228.7369(4)*4226.15(4)4190.07(2)4170.11(11)4215.10(3)4166.43(3)4193.80(2)4225.39(4)4207.57(3) B/MHz1108.1111(1)1108.0905(2) 1107.9552(1) 1106.6538(4) 1101.8516(1) 1101.6445(2) 1097.0567(1) 1092.2242(2)1090.4263(2) C/MHz 943.9661(1) 943.8275(2) 941.9146(1) 939.9710(4) 938.7546(1) 936.1569(3) 934.2059(1) 932.2520(2) 931.9663(2) P aa /uÅ 2 435.97 435.98 436.03 436.57 438.56 438.65 440.57442.60 442.82 P bb /uÅ 2 99.41 99.48100.51101.09 99.79 101.20 100.40 99.50 99.46 P cc /uÅ 2 20.10 20.10 20.10 20.10 20.11 20.10 20.10 20.10 20.66 c

6 Second moment: P aa = (I b + I c – I a )/2 =  m i a i 2, etc. Sum of mass times distance along the a axis (or from the bc plane) squared Scaling Multiply each model coordinate, a i, by [P aa (obs)/P aa (calc)] 1/2 and the new set of a i coordinates now will reproduce P aa (obs) Repeat for b i and c i. The scaled set of coordinates reproduce the observed second moments (or rotational constants).

7 1H-Nonafluorobutane 1 2 CCCC anti/CCCH gauche CCCC anti/CCCH anti (0.0 kcal/mol, ass'd) (0.4 kcal/mol, ass'd) 3 4 5 CCCCgauche/CCCHgauche CCCCgauche/CCCHanti CCCCgauche/CCCHgauche (cis, 0.8 kcal/mol, ass’d) (0.8 kcal/mol, ass’d) (trans, 1.1 kcal/mol) a b

8 Spectroscopic Constants of 1H-nonafluorobutane Conf. 1(Anti/Gauche) Not shown: Conf's 2(AA), 3(GA), 4(GGcis) Parameter Obs'd Calc'd* A/MHz 1428.9502(2) 1435.626 B/MHz 593.32878(6) 593.583 C/MHz 546.43577(6) 547.162 P aa /uÅ 2 711.4812 711.507 P bb /uÅ 2 213.3838 212.130 P cc /uÅ 2 140.2878 139.897 *PBE0/VTZ

9 In this example, the a i, b i, and c i coordinates were produced by a PBE0/VTC density functional calculation of the AG conformation of 1H-nonafluorobutane, C 4 HF 9. Scale factors for each principal axis. S a = [P aa (obs)/P aa (model)] 1/2 = [(711.4812)/(711.507)] 1/2 = [0.99996374] 1/2 = 0.9999818 S b = [P bb (obs)/P bb (model)] 1/2 = [(213.3838)/(212.130)] 1/2 = [1.0059105] 1/2 = 1.0029510 S c = [P cc (obs)/P cc (model)] 1/2 = [(140.2878)/(139.897)] 1/2 = [1.002793)] 1/2 = 1.0013958 P aa (model) = m 1 a 1 2 + m 2 a 2 2 + … m 14 a 14 2 = 711.507 P aa (model)(S a 2 ) = m 1 (a 1 S a ) 2 + m 2 (a 2 S a ) 2 + … m 14 (a 14 S a ) 2 = = [m 1 a 1 2 + m 2 a 2 2 … + m 14 a 14 2 ](S a 2 ) = 711.4812 = P aa (obs) Similarly, repeat for the b and c coordinates of each atom. Note that scaling does not move the center of mass nor the principal axes.

10 Spectroscopic Constants of 1H-nonafluorobutane Conf. 1(Anti/Gauche) Not shown: Conf's 2(AA), 3(GA), 4(GGcis) Parameter Obs'd Calc'd* (Calc'd) * (Scale Factors) A/MHz 1428.9502(2) 1435.6261428.962 B/MHz 593.32878(6) 593.583 593.328 C/MHz 546.43577(6) 547.162 546.436 P aa /uÅ 2 711.4812 711.507 711.483 P bb /uÅ 2 213.3838 212.130 213.381 P cc /uÅ 2 140.2878 139.897 140.287 *PBE0/VTZ

11 -CH 2 -/-CH 3 groups 1.56 uÅ 2 *propane, Pcc = 4.69 (4.69/3 = 1.56) 1-fluorobutane, Pcc = 6.39 (all anti) (6.39/4 = 1.60) 1-chlorobutane, Pcc = 6.32 (all anti) (6.32/4 = 1.58) *5-hexynenitrile, Pcc = 4.692 (all anti) (4.69/3 = 1.57) butyl cyanide, Pcc = 6.286 (all anti) (6.29/4 = 1.57) 1-hexyne, Pcc = 6.2689 (all anti) (6.27/4 = 1.57) pentane, Pcc = 7.90 (all anti) (7.90/5 = 1.58) anisole, Pcc = 1.70 1.70 p-anisaldehyde, Pcc = 1.81 (anti), 1.80 (syn) 1.81, 1.80 3-hexyne, Pcc = 7.31 (7.31/4 = 1.83) *3-heptyne, Pcc = 8.86 (all anti), (8.86/5 = 1.77) propargyl benzene Pcc = 2.20 2.20 benzyl cyanide, Pcc = 2.13 2.13 a c

12 Applications of CH 2 /CH 3 2 nd moments S-methyl thiochloroformate 35 ClCOSCH 3 ABC: 6986.1 2033.35 1590.28 P aa, P bb, P cc : 247.00 70.79 1.55 P cc = 1.55 Heavy-atom-planar Ethyl Cyanoformate NCCOOCH 2 CH 3 ABC of Conf. 1: 6453.3 1500.47 1236.36 P aa, P bb, P cc : 333.63 75.13 3.18* ABC of Conf. 2: 6787.8 1549.38 1406.80 P aa, P bb, P cc : 305.48 53.76 20.70 * Conf. 1: P cc = 3.18 or 1.59 per CH 2 /CH 3, Heavy-atom-planar, C s symmetry a c a c

13 -CH(CH 3 ) 2 (Isopropyl) Second Moments, 55 uÅ 2 *(CH 3 ) 2 CHF (2-fluoropropane)P aa = 54.9 *(CH 3 ) 2 CF 2 (2,2-difluoropropane)P bb = 55.0 (CH 3 ) 2 CHOH (2-propanol)P aa = 54.7 (CH 3 ) 2 CHSH(2-propanthiol)P bb = 54.8 (CH 3 ) 2 CHCN (2-cyanopropane)P bb = 55.2 (CH 3 ) 2 CHCCH (3-methyl-1-butyne) P bb = 54.9 *(CH 3 ) 2 CHC 6 H 4 CHO (p-Isopropyl benzaldehyde) P cc = 55.5 (syn) P cc = 55.5 (anti) (Isopropyl group straddles phenyl ring) a b c b a c c a

14 Applications of isopropyl 2 nd moments: 2-methylbutane CH 3 CH 2 CH(CH 3 ) 2 P bb =57.60 [55(isopropyl)+2(1.6)=58.2] 2-methylpentane CH 3 CH 2 CH 2 CH(CH 3 ) 2 P cc =59.27[55(isopropyl)+3(1.6)=59.8] 6-methyl-3-heptyne (isobutyl ethyl acetylene) CH 3 CH 2 C≡CCH 2 CH(CH 3 ) 2 P cc = 60.00 [55(isopropyl) + 3(1.6) =59.8] Isopropyl Fluoroformate FCOOCH(CH 3 ) 2 P cc = 27.07 and not 55. C 1 symmetry a b a c a c a c

15 -C 6 H 5 (phenyl) P bb = 89.2 uÅ 2 Phenylacetylene, P bb = 89.01 Chlorobenzene, P bb = 89.12 Cyanobenzene, P bb = 89.40 Isocyanobenzene, P bb = 89.34 a a b b

16 Applications of Phenyl Second moments: Ethyl benzene; P bb = 91.46 [89.2 + 2(1.6) = 92.4] Benzyl fluoride;P bb = 90.57 [89.2 + 1.6 = 90.8] (C-F bond orthogonal to phenyl) Propargyl benzene; P bb = 114.727 C 6 H 5 CH 2 C≡CH P cc = 2.196 Benzyl Alcohol P bb = 92.57 [90.8 if C-O bond orthogonal] P cc = 12.63 [1.6 if heavy-atom-planar] (C-O bond IS NEITHER orthogonal to phenyl nor heavy-atom-planar) Isobutyl benzene P bb = 143.7 [89.2 + 55 + 1.6 = 145.8] b b a a b a b c b c

17 Perfluoromethylene/methyl (-CF 2 -/-CF 3 ), 45 uÅ 2 C 3 F 8 (C 2v ) P cc = 134.34 perfluoropropane (134.34/3 = 44.78) HCF 2 CF 2 CF 3 (C s ) P cc = 135.312 1H-perfluoropropane (135.312/3 = 45.10) C 5 F 12 (C 2 ) P cc = 229.616 perfluoropentane (229.616/5 = 45.92) helical C 6 F 14 (C 2 ) P cc = 198.3355 perfluorohexane (198.3355/6 = 46.98) helical CF 3 (CF 2 ) 6 CN (C 1 ) P cc = 341.3318 (341.3318/7 = 48.76) Perfluoroheptyl cyanide (helical) c b b c

18 Acknowledgments David Lide (NBS, NIST) Joseph Fournier (UConn, Yale) Stewart Novick (Wesleyan) Pete Pringle " Herb Pickett " Steve Cooke" and SUNY at Purchase)


Download ppt "SECOND (PLANAR) MOMENTS AND THEIR APPLICATIONS IN SPECTROSCOPY Robert K. Bohn 1, John A. Montgomery, Jr. 2, H. Harvey Michels 2, Jason Byrd 2 1. Univ."

Similar presentations


Ads by Google