Download presentation
Presentation is loading. Please wait.
Published byAnthony Todd Modified over 9 years ago
1
Nonlinear Programming Peter Zörnig ISBN: 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston Abbildungsübersicht / List of Figures Tabellenübersicht / List of Tables
2
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston Fig. 1.1. Graphical illustration of the transportation problem. 2
3
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 3 Table 1.1. Data of the meteorological observatory.
4
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 4 Fig. 1.2. Dispersion diagram.
5
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 5 Fig. 1.3. Measurements of a box.
6
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 6 Fig. 1.4. Measures of the modified box.
7
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 7 Fig. 1.5. Locations of gas stations and demands.
8
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 8 Table 1.2. Heights of terrain and road.
9
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 9 Fig. 1.6. Terrain and optimal road height.
10
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 10 Fig. 1.7. Nonconvex feasible region.
11
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 11 Fig. 1.8. Nonconnected feasible region.
12
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 12 Fig. 1.9. Optimal point in the interior of M.
13
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 13 Fig. 1.10. Local and global minimum points.
14
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 14 Fig. 2.1. Feasible and nonfeasible directions.
15
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 15 Fig. 2.2. Cone Z(x ∗ ) of Example 2.2 (a).
16
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 16 Fig. 2.3. Cone Z(x ∗ ) of Example 2.2 (b).
17
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 17 Fig. 2.4. Cone of feasible directions for linear constraints.
18
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 18 Fig. 2.5. Cone of feasible directions with L 0 (x ∗ ) ≠ Z(x ∗ ) ≠ L(x ∗ ).
19
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 19 Fig. 2.6. Geometric illustration of Example 2.11.
20
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 20 Fig. 3.1. Line segment [x 1, x 2 ].
21
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 21 Fig. 3.2. Convex and nonconvex sets.
22
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 22 Fig. 3.3. Convex polyhedral sets.
23
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 23 Fig. 3.4. Extreme points of convex sets.
24
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 24 Fig. 3.5. Convex hull of a finite set.
25
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 25 Fig. 3.6. Convex hulls of nonfinite sets.
26
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 26 Fig. 3.7. Simplex of dimension 2 and 3.
27
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 27 Fig. 3.8. Illustration of Theorem 3.12.
28
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 28 Fig. 3.9. Convex and concave functions.
29
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 29 Fig. 3.10. Illustration of Theorem 3.25.
30
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 30 Fig. 3.11. The epigraph of a function.
31
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 31 Fig. 3.12. Supporting hyperplanes of convex sets.
32
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 32 Fig. 3.13. Support function of f at x ∗.
33
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 33 Fig. 3.14. Support functions of the function f of Example 3.35.
34
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 34 Fig. 3.15. The function f (x1, x2) = |x1| + |x2|.
35
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 35 Fig. 3.16. Illustration of Theorem 3.48.
36
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 36 Fig. 3.17. Minimum point of a concave function.
37
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 37 Fig. 4.1. Nonregular point x ∗ = 0.
38
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 38 Fig. 4.2. Illustration of the Farkas lemma.
39
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 39 Fig. 4.3. Geometrical illustration of KKT conditions.
40
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 40 Fig. 4.4. Illustration of the relation (4.22).
41
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 41 Fig. 4.5. Illustration of Example 4.8.
42
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 42 Fig. 4.6. Illustration of Example 4.14.
43
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 43 Fig. 4.7. Saddle point.
44
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 44 Fig. 4.8. Geometric illustration of (P).
45
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 45 Fig. 4.9. Geometric illustration of (D).
46
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 46 Fig. 4.10. Function h 1 (x 1 ) for various values of u.
47
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 47 Fig. 4.11. Dual objective function.
48
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 48 Fig. 4.12. Geometrical solution of Example 4.47 (case a).
49
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 49 Fig. 4.13. Geometrical solution of Example 4.47 (case b).
50
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 50 Fig. 4.14. Illustration of Example 4.50.
51
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 51 Fig. 6.1. Unimodal function.
52
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 52 Fig. 6.2. Locating of x.
53
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 53 Fig. 6.3. Construction of the new interval [a k+1, b k+1 ].
54
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 54 Table 6.1. Golden Section.
55
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 55 Fig. 6.4. Iteration of Newton’s method.
56
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 56 Fig. 6.5. Construction of a useless value.
57
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 57 Fig. 6.6. Cycling of Newton’s method.
58
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 58 Fig. 6.7. Interpolation polynomials of Example 6.17.
59
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 59 Fig. 6.8. Interpolation polynomials of Example 6.20.
60
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 60 Fig. 7.1. Orthogonal coordinate transformations.
61
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 61 Fig. 7.2. Level curves of the function 2x 2 1 + 4x 1 x 2 + 5x 2 2.
62
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 62 Fig. 7.3. Level surface z = 6 for the function 7x 2 1 − 2x 1 x 2 + 4x 1 x 3 + 7x 2 2 − 4x 2 x 3 + 10x 2 3.
63
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 63 Table 7.1. Gradient method.
64
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 64 Fig. 7.4. Minimization process of the gradient method.
65
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 65 Table 7.2. Conjugate gradient method (quadratic problem).
66
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 66 Table 7.3. Conjugate gradient method (nonquadratic problem).
67
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 67 Fig. 7.5. Solution of Example 7.30 by the conjugate gradient method.
68
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 68 Table 7.4. DFP method.
69
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 69 Table 7.5. Cyclic minimization.
70
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 70 Fig. 7.6. Solution of Example 7.38.
71
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 71 Table 7.6. Inexact line search (case a).
72
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 72 Fig. 7.7. Convergence to a nonoptimal point.
73
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 73 Table 7.7. Inexact line search (case b).
74
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 74 Fig. 7.8. Oscillation of the algorithm.
75
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 75 Fig. 7.9. Reversal strategy.
76
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 76 Fig. 7.10. Solution of the quadratic subproblem.
77
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 77 Fig. 7.11. Trust region method.
78
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 78 Fig. 8.1. Construction of the search direction.
79
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 79 Fig. 8.2. Resolution of Example 8.2 by Rosen’s method.
80
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 80 Fig. 8.3. Optimal directions.
81
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 81 Fig. 8.4. Zigzag movement.
82
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 82 Table 8.1. Pivoting of Example 8.17.
83
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 83 Fig. 9.1. Active set method.
84
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 84 Table 9.1. Initial tableau of Lemke’s method.
85
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 85 Table 9.2. Pivot steps of Example 9.4.
86
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 86 Table 9.3. Pivot steps of Example 9.5.
87
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 87 Fig. 9.2. Unbounded optimal solution.
88
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 88 Fig. 9.3. Locations of gas stations.
89
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 89 Fig. 10.1. Penalty terms.
90
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 90 Fig. 10.2. Function q(x, r) of Example 10.2.
91
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 91 Fig. 10.3. Function q(x, r) of Example 10.2.
92
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 92 Fig. 10.4. Penalty method.
93
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 93 Fig. 10.5. Exact penalty function (10.12).
94
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 94 Fig. 10.6. Illustration of robustness.
95
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 95 Fig. 10.7. Barrier terms.
96
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 96 Fig. 10.8. Barrier function s(x, c) of Example 10.16.
97
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 97 Table 10.1. Solution of Example 10.16.
98
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 98 Table 10.2. Solution of Example 10.17.
99
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 99 Fig. 10.9. Barrier method.
100
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 100 Fig. 11.1. Partial cost function.
101
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 101 Fig. 11.2. Nondifferentiable function of a minimax problem.
102
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 102 Fig. 11.3. Nondifferentiable bidimensional objective function.
103
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 103 Fig. 11.4. Graphical solution of problem (11.9).
104
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 104 Fig. 11.5. Objective function of problem (11.8).
105
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 105 Fig. 11.6. Minimization of function (11.10) with the gradient method.
106
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 106 Fig. 11.7. Minimization of function (11.11) with the gradient method.
107
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 107 Fig. 11.8. Piecewise linear function f and differential approximation g for ε = 0.1.
108
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 108 Table 11.1. Minimization by differentiable approximation.
109
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 109 Fig. 11.9. Local and global minima of problem (11.28).
110
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 110 Fig. 11.10. D.c. function.
111
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 111 Fig. 11.11. Branch-and-bound method.
112
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 112 Fig. 11.11. Branch-and-bound method (continuation).
113
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 113 Fig. 11.12. Subdivisions of the feasible region.
114
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 114 Fig. 11.13. Optimization problem (11.36).
115
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 115 Table 11.2. Population P(0).
116
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 116 Table 11.3. Population P(1).
117
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 117 Fig. 2.7. Feasible set and gradients.
118
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 118 Fig. 2.8. Feasible region and gradients.
119
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 119 Fig. 2.9. Feasible directions at x ∗ in diverse cases.
120
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 120 Fig. 3.18. Algebraic sum.
121
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 121 Fig. 3.19. Feasible direction.
122
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 122 Fig. 3.20. Discontinuous concave function.
123
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 123 Fig. 3.21. Convex function.
124
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 124 Fig. 3.22. Geometrical illustration of the subdifferential.
125
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 125 Fig. 3.23. Dispersion diagram.
126
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 126 Fig. 3.24. Feasible region.
127
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 127 Fig. 4.15. Regular point x ∗ = 0 with linearly dependent gradients.
128
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 128 Fig. 4.16. Geometric resolution of Exercise 4.9.
129
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 129 Fig. 4.17. Geometric solution of Exercise 4.15.
130
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 130 Fig. 4.18. Geometric solution of Exercise 4.33.
131
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 131 Fig. 4.19. Geometric solution of Exercise 4.34.
132
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 132 Table 5.1. Error sequence.
133
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 133 Table 5.2. Linear and quadratic convergence.
134
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 134 Table 6.2. Golden Section.
135
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 135 Table 6.3. Bisection algorithm.
136
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 136 Fig. 6.9. Premature convergence of the bisection method.
137
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 137 Fig. 6.10. Hermite interpolation polynomial.
138
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 138 Fig. 7.12. Level curves of Exercise 7.7.
139
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 139 Fig. 7.13. Displaced ellipses.
140
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 140 Fig. 7.14. Level curves of quadratic functions.
141
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 141 Table 7.8. Gradient method.
142
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 142 Table 7.9. Newton’s method.
143
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 143 Fig. 7.15. Minimization process of Newton’s method.
144
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 144 Table 7.10. Conjugate gradient method.
145
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 145 Table 7.11. DFP method.
146
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 146 Table 7.12. Conjugate gradient method.
147
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 147 Table 7.13. DFP method.
148
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 148 Table 7.14. Variant of the DFP method.
149
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 149 Table 7.15. Cyclic minimization.
150
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 150 Fig. 7.16. Level curves of the first quadratic model of Example 7.50.
151
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 151 Fig. 7.17. Level curves of the function of Exercise 7.54 (b).
152
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 152 Fig. 8.5. Geometric solution of Exercise 8.7.
153
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 153 Fig. 8.6. Feasible region.
154
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 154 Fig. 8.7. Zoutendijk’s method.
155
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 155 Fig. 8.8. Graphical illustration of both methods.
156
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 156 Table 8.2. Pivoting of Example 8.18.
157
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 157 Table 9.4. Lemke’s method.
158
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 158 Table 9.5. Lemke’s method.
159
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 159 Table 10.3. Barrier method.
160
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 160 Fig. 10.10. Solution process.
161
Nonlinear Programming, Peter Zörnig ISBN 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston 161 Table 10.4. Barrier method.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.