Download presentation
Presentation is loading. Please wait.
Published byArline Ryan Modified over 9 years ago
1
___________________________________________________________________________ Operations Research Jan Fábry Linear Programming
2
___________________________________________________________________________ Operations Research Jan Fábry Modeling Process Real-World Problem Recognition and Definition of the Problem Formulation and Construction of the Mathematical Model Solution of the Model Interpretation Validation and Sensitivity Analysis of the Model Implementation
3
Linear Programming ___________________________________________________________________________ Operations Research Jan Fábry linear objective function linear constraints decision variables Mathematical Model maximization minimization equations = inequalities or nonnegativity constraints
4
Linear Programming ___________________________________________________________________________ Operations Research Jan Fábry Example - Pinocchio 2 types of wooden toys: trucktrain Inputs: wood - unlimited carpentry labor – limited finishing labor - limited Objective: maximize total profit (revenue – cost) Demand: trucks - limited trains - unlimited
5
Linear Programming ___________________________________________________________________________ Operations Research Jan Fábry Example - Pinocchio TruckTrain Price 550 CZK 700 CZK Wood cost 50 CZK 70 CZK Carpentry labor 1 hour 2 hours Finishing labor 1 hour Monthly demand limit 2 000 pcs. Worth per hour Available per month Carpentry labor 30 CZK 5 000 hours Finishing labor 20 CZK 3 000 hours
6
Linear Programming ___________________________________________________________________________ Operations Research Jan Fábry Graphical Solution of LP Problems Feasible area Objective function Optimal solution x1x1 x2x2 z
7
Linear Programming ___________________________________________________________________________ Operations Research Jan Fábry Graphical Solution of LP Problems Feasible area - convex set A set of points S is a convex set if the line segment joining any pair of points in S is wholly contained in S. Convex polyhedrons
8
Linear Programming ___________________________________________________________________________ Operations Research Jan Fábry Graphical Solution of LP Problems Feasible area – corner point A point P in convex polyhedron S is a corner point if it does not lie on any line joining any pair of other (than P) points in S.
9
Linear Programming ___________________________________________________________________________ Operations Research Jan Fábry Graphical Solution of LP Problems Basic Linear Programming Theorem The optimal feasible solution, if it exists, will occur at one or more of the corner points. Simplex method
10
Linear Programming ___________________________________________________________________________ Operations Research Jan Fábry Graphical Solution of LP Problems 1000 3000 x1x1 x2x2 2000 0 A 1000 B C D E
11
Linear Programming ___________________________________________________________________________ Operations Research Jan Fábry Interpretation of Optimal Solution Decision variables Binding / Nonbinding constraint ( or ) Objective value = 0 Slack/Surplus variable > 0 Slack/Surplus variable
12
Linear Programming ___________________________________________________________________________ Operations Research Jan Fábry Special Cases of LP Models Unique Optimal Solution z x1x1 x2x2 A
13
Linear Programming ___________________________________________________________________________ Operations Research Jan Fábry Special Cases of LP Models Multiple Optimal Solutions z x1x1 x2x2 B C
14
Linear Programming ___________________________________________________________________________ Operations Research Jan Fábry Special Cases of LP Models No Optimal Solution z x1x1 x2x2
15
Linear Programming ___________________________________________________________________________ Operations Research Jan Fábry Special Cases of LP Models No Feasible Solution x1x1 x2x2
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.