Download presentation
Presentation is loading. Please wait.
Published byJonathan Ray Modified over 9 years ago
1
Penn ESE370 Fall2014 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 19: October 15, 2014 Energy and Power Optimization
2
Previously Three components of power –Static –Short circuit –Capacitive switching P tot = P static + P sc + P dyn Penn ESE370 Fall2014 -- DeHon 2
3
Static Penn ESE370 Fall2014 -- DeHon 33 CMOS circuit in steady-state –Leaks subthreshold current determined by off device –P static = V dd × I static
4
Switching (Charging) Penn ESE370 Fall2014 -- DeHon 44 CMOS circuit switching output from 0 1 –Spends energy CV dd 2 charging load
5
Switching (Short Circuit) P=IV When: Vin=Vdd/2 Vth<Vin<Vdd-|Vthp| Penn ESE370 Fall2014 -- DeHon 5
6
Today Power Sources –Static –Short Circuit –Capacitive Switching Reducing Switching Energy Energy-Delay tradeoffs (time permit) Penn ESE370 Fall2014 -- DeHon 6
7
Switching Quick Review Penn ESE370 Fall2014 -- DeHon 7
8
Switching Currents I switch (t) = I sc (t) + I dyn (t) I(t) = I static (t)+I switch (t) Penn ESE370 Fall2014 -- DeHon 8 I sc I static I dyn
9
Charging I dyn (t) –I ds = f(V ds,V gs ) –and V gs, V ds changing Penn ESE370 Fall2014 -- DeHon 9
10
Look at Energy [focus on I dyn (t)] Penn ESE370 Fall2014 -- DeHon 10
11
Energy to Switch Penn ESE370 Fall2014 -- DeHon 11
12
Capacitor Charge Penn ESE370 Fall2014 -- DeHon 12
13
Capacitor Charging Energy Penn ESE370 Fall2014 -- DeHon 13
14
Switching Power Every time output switches 0 1 pay: –E = CV 2 P dyn = (# 0 1 trans) × CV 2 / time # 0 1 trans = ½ # of transitions P dyn = (# trans) × ½CV 2 / time Penn ESE370 Fall2014 -- DeHon 14
15
Short Circuit Power Penn ESE370 Fall2014 -- DeHon 15
16
Preclass 1 Current flow during switching? Penn ESE370 Fall2014 -- DeHon 16
17
Short Circuit Power Between V TN and V dd -V TP –Both N and P devices conducting Roughly: Penn ESE370 Fall2014 -- DeHon 17
18
Peak Current Penn ESE370 Fall2014 -- DeHon 18 I peak around V dd /2 –If |V TN |=|V TP | and sized equal rise/fall
19
Short-Circuit Energy Penn ESE370 Fall2014 -- DeHon 19
20
Short-Circuit Energy Penn ESE370 Fall2014 -- DeHon 20
21
Short Circuit Energy Looks like a capacitance –Q=I×t –Q=CV Penn ESE370 Fall2014 -- DeHon 21
22
Short Circuit Energy and Power Every time switch –Also dissipate short-circuit energy: E = CV 2 –Different C = C sc –C cs “fake” capacitance (for accounting) Largely same dependence as charging Penn ESE370 Fall2014 -- DeHon 22
23
Switching Energy Penn ESE370 Fall2014 -- DeHon 23
24
Reminder Output switches 0 1 charge output from Vdd Output switches 1 0 discharge output to ground – no current from Vdd Penn ESE370 Fall2014 -- DeHon 24
25
Data Dependent Activity Consider an 8b counter –How often do each of the following switch? Low bit? High bit? –Average switching across all 8 output bits? Assuming random inputs –Activity at output of nand4? –Activity at output of xor4? Penn ESE370 Fall2014 -- DeHon 25
26
Gate Output Switching (random inputs) Penn ESE370 Fall2014 -- DeHon 26 Prev. Next 0 1 Pswitch=P(0@i)*P(1@i+1) +P(1@i)*P(0@i+1)
27
Charging Power P dyn = (# trans) × ½CV 2 / time Often like to think about switching frequency Useful to consider per clock cycle –Frequency f = 1/clock-period P dyn = (#trans/clock) ½CV 2 f Penn ESE370 Fall2014 -- DeHon 27
28
Switching Power P dyn = (#trans/clock) ½CV 2 f Let a = activity factor a = average #tran/clock P dyn = a½CV 2 f P sc = aC sc V 2 f Penn ESE370 Fall2014 -- DeHon 28
29
Total Power P tot = P static + P sc + P dyn P dyn + P sc = a(½C load +C sc )V 2 f P tot ≈ a(½C load +C sc )V 2 f+VI ’ s (W/L)e -Vt/(nkT/q) Penn ESE370 Fall2014 -- DeHon 29
30
Dynamic Power Penn ESE370 Fall2014 -- DeHon 30
31
Reduce Dynamic Power? P dyn = a × ½CV 2 f How do we reduce dynamic power? Penn ESE370 Fall2014 -- DeHon 31
32
Slow Down What happens to power contributions as reduce clock frequency? What suggest about V th ? Penn ESE370 Fall2014 -- DeHon 32
33
Reduce V What happens as reduce V? –Delay? –Energy? Static Switching Penn ESE370 Fall2014 -- DeHon 33
34
Penn ESE370 Fall2014 -- DeHon 34 Old Reduce V (no vsat) gd =Q/I=(CV)/I I d =( C OX /2)(W/L)(V gs -V TH ) 2 gd impact? gd α 1/V
35
Saturation Observe Ignoring leakage Penn ESE370 Fall2014 -- DeHon 35
36
Penn ESE370 Fall2014 -- DeHon 36 Reduce V (velocity saturation) gd =Q/I=(CV)/I I ds =( sat C OX )(W)(V gs -V TH -V DSAT /2)
37
Reduce Short-Circuit Power? P sc = aC sc V 2 f Penn ESE370 Fall2014 -- DeHon 37
38
Energy vs. Power? Which do we care about? –Battery operated devices? –Desktops? –Pay for energy by kW-Hr? Penn ESE370 Fall2014 -- DeHon 38
39
Increase V th ? What is impact of increasing threshold on –Delay? –Leakage? Penn ESE370 Fall2014 -- DeHon 39
40
Penn ESE370 Fall2014 -- DeHon 40 Increase V th gd =Q/I=(CV)/I I ds =( sat C OX )(W)(V gs -V TH -V DSAT /2)
41
Idea Short circuit energy looks like more capacitance for switching energy Tradeoff –Speed –Switching energy –Leakage energy Energy-Delay tradeoff: E 2 ? E Penn ESE370 Fall2014 -- DeHon 41
42
Admin HW6 Due tomorrow Project 1 out –Milestone piece due in one week –Full Report in two weeks –That means you need to be starting on it now…and working on it all next week Read assignment today Lecture Friday Penn ESE370 Fall2014 -- DeHon 42
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.