Presentation is loading. Please wait.

Presentation is loading. Please wait.

Video Video.

Similar presentations


Presentation on theme: "Video Video."— Presentation transcript:

1 Video Video

2 Introduction Video Signal Representation Color Encoding
Computer Video Format Video

3 Video is the technology of electronically capturing, recording, processing, storing, transmitting, and reconstructing a sequence of still images representing scenes in motion. The term video (from Latin: "I see") commonly refers to several storage formats for moving eye pictures: digital video formats, including DVD, QuickTime, and MPEG-4; and analog videotapes, including VHS and Betamax. Video can be recorded and transmitted in various physical media: in magnetic tape when recorded as PAL or NTSC electric signals by video cameras, or in MPEG-4 or DV digital media when recorded by digital cameras. Video

4 Basic Concepts (Video Representation)
Human eye views video immanent properties of the eye determine essential conditions related to video systems. Video signal representation consists of 3 aspects: Visual Representation objective is to offer the viewer a sense of presence in the scene and of participation in the events portrayed. Transmission Video signals are transmitted to the receiver through a single television channel Digitalization analog to digital conversion, sampling of gray(color) level, quantization. Video

5 aspect ratio Aspect ratio describes the dimensions of video screens and video picture elements. All popular video formats are rectilinear, and so can be described by a ratio between width and height. The screen aspect ratio of a traditional television screen is 4:3, or about 1.33:1. High definition televisions use an aspect ratio of 16:9, or about 1.78:1. Video

6 Visual Representation
The televised image should convey the spatial and temporal content of the scene Vertical detail and viewing distance Aspect ratio: ratio of picture width and height (4/3 = 1.33 is the conventional aspect ratio). Viewing angle = viewing distance/picture height Horizontal detail and picture width Picture width (conventional TV service ) - 4/3 * picture height Total detail content of the image Number of pixels presented separately in the picture height = vertical resolution Number of pixels in the picture width = horizontal resolution*aspect ratio product equals total number of picture elements in the image. Video

7 Visual Representation
Perception of Depth In natural vision, this is determined by angular separation of images received by the two eyes of the viewer In the flat image of TV, focal length of lenses and changes in depth of focus in a camera influence depth perception. Luminance and Chrominance Color-vision - achieved through 3 signals, proportional to the relative intensities of RED, GREEN and BLUE. Color encoding during transmission uses one LUMINANCE and two CHROMINANCE signals Temporal Aspect of Resolution Motion resolution is a rapid succession of slightly different frames. For visual reality, repetition rate must be high enough (a) to guarantee smooth motion and (b) persistence of vision extends over interval between flashes(light cutoff b/w frames). Video

8 focal length of lenses Video

9 Chrominance Chrominance (chroma for short), is the signal used in video systems to convey the color information of the picture, separately from the accompanying luma signal. Chrominance is usually represented as two color-difference components: U = B'–Y' (blue – luma) and V = R'–Y' (red – luma). Each of these difference components may have scale factors and offsets applied to them, as specified by the applicable video standard. Video

10 Luma luma represents the brightness in an image (the "black and white" or achromatic portion of the image). Luma is typically paired with chroma. Luma represents the achromatic image without any color, while the chroma components represent the color information. Video

11 Visual Representation
Continuity of motion Motion continuity is achieved at a minimal 15 frames per second; is good at 30 frames/sec; some technologies allow 60 frames/sec. NTSC standard provides 30 frames/sec Hz repetition rate. PAL standard provides 25 frames/sec with 25Hz repetition rate. Flicker effect Flicker effect is a periodic fluctuation of brightness perception. To avoid this effect, we need 50 refresh cycles/sec. Display devices have a display refresh buffer for this. Temporal aspect of video bandwidth depends on rate of the visual system to scan pixels and on human eye scanning capabilities. Video

12 Transmission (NTSC) Video bandwidth is computed as follows
700/2 pixels per line X 525 lines per picture X 30 pictures per second Visible number of lines is 480. Intermediate delay between frames is 1000ms/30fps = 33.3ms Display time per line is 33.3ms/525 lines = 63.4 microseconds The transmitted signal is a composite signal consists of 4.2Mhz for the basic signal and 5Mhz for the color, intensity and synchronization information. Video

13 Color Encoding A camera creates three signals
RGB (red, green and blue) For transmission of the visual signal, we use three signals 1 luminance (brightness-basic signal) and 2 chrominance (color signals). In NTSC, luminance and chrominance are interleaved Goal at receiver separate luminance from chrominance components avoid interference between them prior to recovery of primary color signals for display. Video

14 Color Encoding RGB signal - for separate signal coding YUV signal
consists of 3 separate signals for red, green and blue colors. Other colors are coded as a combination of primary color. (R+G+B = 1) --> neutral white color. YUV signal separate brightness (luminance) component Y and color information (2 chrominance signals U and V) Y = 0.3R G B U = (B-Y) * 0.493 V = (R-Y) * 0.877 Resolution of the luminance component is more important than U,V Coding ratio of Y, U, V is 4:2:2 Video

15 Color Encoding(cont.) YIQ signal Composite signal
similar to YUV - used by NTSC format Y = 0.3R G B U = 0.60R G B V = 0.21R -0.52g B Composite signal All information is composed into one signal To decode, need modulation methods for eliminating interference b/w luminance and chrominance components. Video

16 Digitalization Refers to sampling the gray/color level in the picture at MXN array of points. Once points are sampled, they are quantized into pixels sampled value is mapped into an integer quantization level is dependent on number of bits used to represent resulting integer, e.g. 8 bits per pixel or 24 bits per pixel. Need to create motion when digitizing video digitize pictures in time obtain sequence of digital images per second to approximate analog motion video. Video

17 Computer Video Format Video Digitizer
A/D converter Important parameters resulting from a digitizer digital image resolution quantization frame rate E.g. Parallax X Video - camera takes the NTSC signal and the video board digitizes it. Resulting video has 640X480 pixels spatial resolution 24 bits per pixel resolution 20fps (lower image resolution - more fps) Output of digital video goes to raster displays with large video RAM memories. Color lookup table used for presentation of color Video

18 Digital Transmission Bandwidth
Bandwidth requirement for images raw image transmission b/w = size of image = spatial resolution x pixel resolution compressed image - depends on compression scheme symbolic image transmission b/w = size of instructions and primitives carrying graphics variables Bandwidth requirement for video uncompressed video = image size X frame rate compressed video - depends on compression scheme e.g HDTV quality video uncompressed Mbps, compressed using MPEG (34 Mbps with some loss of quality). Video


Download ppt "Video Video."

Similar presentations


Ads by Google