Presentation is loading. Please wait.

Presentation is loading. Please wait.

IceCube S Robbins University of Wuppertal Moriond - “Contents and Structures of the Universe” La Thuile, Italy, March 2006 Outlook for Neutrino Detection.

Similar presentations


Presentation on theme: "IceCube S Robbins University of Wuppertal Moriond - “Contents and Structures of the Universe” La Thuile, Italy, March 2006 Outlook for Neutrino Detection."— Presentation transcript:

1 IceCube S Robbins University of Wuppertal Moriond - “Contents and Structures of the Universe” La Thuile, Italy, March 2006 Outlook for Neutrino Detection at the South Pole Outlook for Neutrino Detection at the South Pole

2 Scientific Goals IceCube Status AMANDA Results Amundsen-Scott South-Pole Station

3 USA (14) Europe (15) Japan New Zealand Alabama University, USA Bartol Research Institute, Delaware, USA Pennsylvania State University, USA UC Berkeley, USA UC Irvine, USA Clark-Atlanta University, USA University of Alaska, Anchorage, USA Univ. of Maryland, USA Alabama University, USA Bartol Research Institute, Delaware, USA Pennsylvania State University, USA UC Berkeley, USA UC Irvine, USA Clark-Atlanta University, USA University of Alaska, Anchorage, USA Univ. of Maryland, USA IAS, Princeton, USA University of Wisconsin-Madison, USA University of Wisconsin-River Falls, USA LBNL, Berkeley, USA University of Kansas, USA Southern University and A&M College, Baton Rouge, USA IAS, Princeton, USA University of Wisconsin-Madison, USA University of Wisconsin-River Falls, USA LBNL, Berkeley, USA University of Kansas, USA Southern University and A&M College, Baton Rouge, USA Universite Libre de Bruxelles, Belgium Vrije Universiteit Brussel, Belgium Université de Mons-Hainaut, Belgium Universiteit Gent, Belgium Humboldt Universität, Germany Universität Mainz, Germany DESY Zeuthen, Germany Universität Dortmund, Germany Universite Libre de Bruxelles, Belgium Vrije Universiteit Brussel, Belgium Université de Mons-Hainaut, Belgium Universiteit Gent, Belgium Humboldt Universität, Germany Universität Mainz, Germany DESY Zeuthen, Germany Universität Dortmund, Germany Universität Wuppertal, Germany MPI Heidelberg, Germany Uppsala University, Sweden Stockholm University, Sweden Imperial College, London, UK Oxford University, UK Utrecht University, Netherlands Universität Wuppertal, Germany MPI Heidelberg, Germany Uppsala University, Sweden Stockholm University, Sweden Imperial College, London, UK Oxford University, UK Utrecht University, Netherlands University of Canterbury, Christchurch, NZ ANTARCTICA The IceCube Collaboration Chiba University, Japan

4 Physics Goals Detect neutrinos from the sources of cosmic-rays  Search for neutrinos from dark matter annihilations Search for neutrinos from cosmological events New Physics

5 Fermi acceleration of protons gives particle spectrum dN p /dE~ E -2 Neutrino production at source: p+  or p+p collisions gives pions  ± ->  ± +   ± -> e ± +  + e Neutrino flavors: e :  :  1:2:0 generic sources 1:1:1 after oscillations Observing Neutrinos

6 IceCube IceTop air shower array 80 pairs of ice Cherenkov tanks IceCube (deep ice) 80 strings of 60 optical modules 17 m between optical modules 125 m between strings 1 km 3 (1 Gton) detector! AMANDA 19 strings, 677 OMs total ø 200m, height 500m

7 ~10-20 m Optical module Mean  - angle is ~0.7 o at 1TeV Muon travels a large distance  Interaction can be outside the detector  Active volume is much larger than the detector Proposed by Markov 1960 νμνμ μ XX’ W  detection principle energy deposited in OM time recorded on OM

8 Optical module ν e,τ NX W e,τ ν μ,e,τ NX Z Charged-current interactions: Neutral-current interactions: e &  detection principle energy deposited in OM time recorded on OM

9 Ice Properties Ice not uniform in depth (e.g. dust layers) Important to understand ice for analysis Mean scattering length: 25m Mean absorption length: 110m

10 Light Propagation Cherenkov cone from muon tracks Use timing information, accounting for propagation Homogeneous iceDepth Dependent ice properties

11 Hot-water drilling Hose reel Drill tower IceTop tanks 5 MW Hot water generator

12 AMANDA IceCube Today 500 m Only IceTop tank InIce string & IceTop 2004/2005 season –New hot water drill –First string deployed (string 21) –Four IceTop stations installed (16 OMs) –60 OMs in deep ice, all 60 functioning 2005/2006 season –Modified drill –8 strings deployed –12 IceTop stations installed –480 OMs in deep ice and 48 OMs in IceTop

13 “String 21” Data First IceCube string, deployed January 2005 Neutrino candidate 9 string Downgoing IceCube event

14 AMANDA IceTop air shower array 80 pair of ice Cherenkov tanks IceCube (deep ice) 80 strings of 60 optical modules 17 m between optical modules 125 m between strings 1 km 3 (1 Gton) detector! AMANDA 19 strings, 677 OMs total ø 200m, height 500m

15 “Diffuse Limits” Measure the neutrino energy spectrum Search for a break in the spectrum Some AGN models excluded at 90% CL : Szabo-Protehoe 92 Stecker, Salamon. Space Sc. Rev. 75, 1996 Protehoe. ASP Conf series, 121, 1997 E 2  μ (E) < 2.6·10 –7 GeV cm -2 sr -1 s -1 Results from one year (2000) of data Consistent with Atmospheric neutrino expectation

16 Point Source Search Neutrino sky map: 2000-2003 data: 807 days livetime 3329 neutrino events Largest significance = 3.4  (92% chance occurrence) No significant excess observed 2000-2003 data: 807 days livetime 3329 neutrino events Largest significance = 3.4  (92% chance occurrence) No significant excess observed

17 Neutrinos from GRBs 10 min-1 hour+1 hour 1.4501.29312 (BT)B-10/A-II97-00 1.8800.6046 (New)A-II2000 1.47 01.24 114 ( All ) A-II 2000 1999 1998 1997 Year A-II (2 analyses) B-10 Detector 2.1900.2424 (BNT) 1.72/2.050/00.83/0.4044 (BT) 2.2400.2096 (BT) 2.2400.2094 (BT) 2.4100.0678 (BT) Event U.L.N Obs N BG, Pred N Bursts Using space and time coincidence leads to a very low background. No observed signal Only ~1 order of magnitude above Waxmann&Bahcall prediction

18 Solar WIMPs Neutralinos captured in the Sun These annihilate producing quarks and leptons And neutrinos, which we search for with IceCube χ + χ → ν + ν (+…) Earth Detector   Freese, ’86; Krauss, Srednicki & Wilczek, ’86 Gaisser, Steigman & Tilav, ’86 Silk, Olive and Srednicki, ’85 Gaisser, Steigman & Tilav, ’86

19 Neutralinos from the Sun data from 2001 Sun Limits on muon flux from Sun IceCube Best-Case

20 Conclusions 2005/6 was a successful deployment season Now have in total 604 optical modules installed Only ~1% failure rate IceCube is on track for 1km 3 neutrino observatory AMANDA has taken 10 years of data AMANDA continues to produce physics results No extraterrestrial neutrinos observed so far Stay tuned…


Download ppt "IceCube S Robbins University of Wuppertal Moriond - “Contents and Structures of the Universe” La Thuile, Italy, March 2006 Outlook for Neutrino Detection."

Similar presentations


Ads by Google