Presentation is loading. Please wait.

Presentation is loading. Please wait.

Quantum measurements: status and problems Michael B. Mensky P.N.Lebedev Physical Institute Moscow, Russia MARKOV READINGS Moscow, May 12, 2005.

Similar presentations


Presentation on theme: "Quantum measurements: status and problems Michael B. Mensky P.N.Lebedev Physical Institute Moscow, Russia MARKOV READINGS Moscow, May 12, 2005."— Presentation transcript:

1

2 Quantum measurements: status and problems Michael B. Mensky P.N.Lebedev Physical Institute Moscow, Russia MARKOV READINGS Moscow, May 12, 2005

3 12.05.20052 M.A.Markov and Bryce DeWitt 3d Intern. Seminar on Quantum Gravity Moscow, 1984 Quantum Gravity and Quantum Measurements M.A.Markov on Qu Meas Nature of physical knowledge (1947) Three interpretations of QM (1991)

4 12.05.20053 Message of the talk Physics of Qu Meas: – Entanglement (  Qu Informatics) Phenomenology of Qu Meas: – Open quantum systems and decoherence Meta-physics of Qu Meas: – Everett’s interpretation and consciousness

5 12.05.20054 Plan of the talk Physics: Entanglement and decoherence Continuous measurements: open quantum systems and dissipation Quantum informatics Bell’s theorem Conceptual problems (M.A.Markov 1947) Everett interpretation (M.A.Markov 1991)

6 12.05.20055 Literature on decoherence H.D.Zeh, Found. Phys. 1, 69 (1970); 3, 109 (1973) W.H.Zurek, Phys. Rev. D 24, 1516 (1981); D 26, 1862 (1982) D.Giulini, E. Joos, C. Kiefer, J. Kupsch, I.-O. Stamatescu, & H.D. Zeh, Decoherence and the appearance of a classical world in quantum theory, Springer, Berlin etc., 1996 M.M.

7 12.05.20056 Reduction postulate Von Neumann reduction postulate  c 1 |a 1  + c 2 |a 2   |a 1  p 1 =| c 1 | 2  |a 2  p 2 =| c 2 | 2 With projectors P 1 = |a 1  a 1  P 2 = |a 2  a 2   P 1  p 1 =  P 1   P 2  p 2 =  P 2 

8 12.05.20057 Generalization of reduction postulate Many alternatives (  P i = 1 ) i  P i  p i =  P i  Fuzzy measurement (  dx R x † R x = 1 ) x  R x  p(x) =  R x † R x 

9 12.05.20058 Open systems and continuous measurements Decoherence and dissipation from interaction with environment System Environment Measurement (phenomenology) Open quantum systems = continuously measured ones

10 12.05.20059 Measuring as an interaction: evolution U |a 1  0   U |a 1  0  |a 1    |a 2  0   U |a 2  0  |a 2    Entanglement     c 1 |a 1  +c 2 |a 2    0  c 1 |a 1  0  +c 2 |a 2  0   U  c 1 |a 1  0  +c 2 |a 2  0    c 1 |a 1    +c 2 |a 2    Entanglement Entangled state

11 12.05.200510 Entanglement       c 1 |a 1  + c 2 |a 2    0   c 1 |a 1    + c 2 |a 2    Decoherence  0 =   c 1 |a 1  + c 2 |a 2   c 1  a 1 | + c 2  a 1 |     Tr   |c 1 | 2 |a 1  a 1  |c 2 | 2 |a 2  a 2  Decoherence Reduction interpretated

12 12.05.200511 Irreversible and reversible decoherence System Reservoir Meter info deco Macroscopic uncontrollable environment  practically irreversible decoherence Environment Reversion: U  U -1 Microscopic or mesoscopic environment  reversible decoherence

13 12.05.200512 Restricted Path Integrals (RPI) Continuous measurements presented by RPI Monitoring an observable  decoherence Non-minimally disturbing monitoring  dissipation

14 12.05.200513 Ideology of Feynman paths Feynman: path integral over all paths Propagator : U t  q'',q' ) =  d[q] exp { (i/  ) S[q] } =  d[p] d[q] exp { (i/  )  0 t (pdq-Hdt) } Evolution :  t  U t    t = U t  0 U t † t q q’q’ q”q”

15 12.05.200514 Restricted Path Integral: the paths, compatible with the readout Partial propagator : U t   q'',q' ) = =  d[p]d[q] w   [p,q] exp { (i/ћ)  0 t (p dq - H dt) } t q q’q’ q”q”  Weight functional Evolution :  t   U t     t  = U t   0 ( U t  ) † Restricting Feynman path integral

16 12.05.200515 Probabilities of measurement readouts Probability of the result: P  =Tr  t  =Tr [ U t   0 ( U t  ) † ] Non-selective description:   t =  d   t  =  d  U t   0 ( U t  ) † Generalized unitarity:  d  ( U t  ) † U t  = 1 t q q’q’ q”q” 

17 12.05.200516 Monitoring an observable Gaussian weight functional w [a] [p,q] = exp { -   0 t [ A(t) - a(t) ] 2 dt } Why Gaussian? Quantum Central Limit Theorem! t A A”A” [a] A’A’ Observable A=A(p,q,t) Measurement readout: [a] = {a(t) | 0  t  t}

18 12.05.200517 Effective Schroedinger equation Restricted Path Integral for monitoring A U t  a  (q'',q')=  d[p]d[q] exp { ( i/ћ )  0 t (p dq - H dt) -   0 t [ A(t) - a(t) ] 2 dt } Effective Hamiltonian  H [a] (p,q,t) = H(p,q,t) - i  ћ ( A(p,q,t) - a(t) ) 2 Effective Schroedinger equation  t  a   /  t = [ - ( i/ћ ) H -  ( A - a(t) ) 2 ]  t  a   Imaginary potential

19 12.05.200518 Density matrix and master equation Selective description:  t  a    U t  a      non-selective (total density matrix):  t =  d [a]  t  a  =  d [a] U t  a   0 ( U t  a  ) † Density matrix  t satisfies master equation:   t /  t = - ( i/ћ ) [ H,  t ] - (  /2 ) [A, [A,  t ] ]  decoherence !

20 12.05.200519 Non-minimally disturbing monitoring Imaginary terms in the exponent w[a] = exp {  dt [-  (A-a(t)) 2 - (i/ћ) a(t) B]} Disturbed evolution conditioned by the observation of a(t): U t  a  =  d[p]d[q] exp {  0 t [ (i/ћ) ( p dq-H(q,p) dt) -  (A(q,p)-a(t)) 2 - (i/ћ) a(t) B(q,p) ]}

21 12.05.200520 Master equation Calculate the selective density matrix  t [a] =U t [a]  0 (U t [a] ) † and the total density matrix  t =  d[a]  t [a] The resulting  t satisfies the master equation   /  t = - (i/ћ) [ H,  ] - (i /2 ћ) [ B, [ A,  ] + ] - ( 2 /8  ћ 2 ) [ B, [ B,  ] ] - (  /2) [ A, [ A,  ] ] Dissipation Decoherence Correction to C&L

22 12.05.200521 Lindblad form of the master equation Introduce the Lindblad operator L = A- i( /2  ћ)B The equation takes then the Lindblad form   /  t = - (i/ћ) [ H - i(  ћ /4) ( (L † ) 2 - L 2 ),  ] - (  /2) ( L † L  - 2 L  L † +  L L† ) –Hamiltonian is shifted by the measurement –Lindblad form  positivity of  No positivity in C&L –Dissipation results from continuous measurements

23 12.05.200522 Dissipative harmonic oscillator Hamiltonian of an oscillator: H = P 2 /2 +  2 Q 2 /2 Momentum is monitored: A=P, B=  Q   /  t = - (i/ћ) [ H,  ] - (i  /2 ћ ) [ Q, [ P,  ] + ] - ( 2  2 /8  ћ 2 ) [ Q, [ Q,  ] ] - (  /2) [ P, [ P,  ] ] –Both momentum and position are monitored –Brownian motion of the oscillator is interpreted as an effect of monitoring its momentum by an environment No such term in Caldeira & Leggett

24 12.05.200523 Dynamical role of information Von Neumann's projection: final state depends on the information RPI: projecting process Dynamics of a measured system depends on the information escaping from it The role for quantum informatic devices: the processed information not escaping

25 12.05.200524 Quantum informatics Qubits Quantum computer Quantum cryptography Quantum teleportation

26 12.05.200525 Qubits Two-level system |0  |1  Superposition  |0  |1   quantum parallelism (entangled states) ( |0  |1     |00  |01  |10  |11   ( |0  |1           |x 

27 12.05.200526 Quantum computer Quantum parallelism  ( |0  |1           |x  Calculation time t  P(N) instead of t  e N Quantum algorithms Factorization in prime numbers = finding the period of a periodic function (digital Fourier decomposition)  Cryptography

28 12.05.200527 Quantum cryptography Quantum cloning  |  |A   |  |  |A’  impossible |  1  |A   |  1  |  1  |A 1 , |  2  |A   |  2  |  2  |A 2  Linearity:  |  1  |  2   |A    |  1  |  1  |  2  |  2   |A’’  not  |  1  |  1  |  2  |  2  |  1  |  2  |  2  |  1   |A’’  Sequence of states: |1  |0  |1  |1  Eavesdropping discovered  |0  and  |1  non-orthogonal  Distribution of code sequences (factorization in prime numbers used)

29 12.05.200528 Quantum teleportation Correlation takes no time (pre-arranged) Communication with light speed AB |  A =  |0  |1  |  B |  A Meas Qu correlation (entanglement) Meas Result i  U i |  B = |  B

30 12.05.200529 Quantum teleportation Arbitrary state |  A =  |0  |1  in A: Qubit |  B and |  A’ quantum correlated |0  A |1  B - |1  A |0  B (entangled) Measurement of |  A |  A result i = 1,2,3,4 Communicating the measurement result i to B Unitary transformation |  B  U i |  B  |  A teleported: U i |  B = |   B =  |0  |1 

31 12.05.200530 Bell’s theorem EPR effect Local realism Bell’s inequality Aspect’s experiment

32 12.05.200531 EPR effect Maximal entanglement: |  |  |  |  =  |A +    |A -    |A -    | A +   anticorrelation of spin projections  Correlation of projections on different axes S=0 S=1/2

33 12.05.200532 Local realism Anticorrelation: |A +    |A -    |A -    | A +   Assumtion of local realism means: – If |A -   , then really |A +   – If | A +   , then really |A -   Then measurement is interpreted as |A m  1  | B n  2  |A m  1  | B -n  1  (same particle)

34 12.05.200533 Bell inequality Given P(A ± B ± C ± ) for a single particle and local realism From probability sum rule: P( A - B + ) = P( A - B + C + ) + P( A - B + C - ) P( A + C - ) = P( A + B + C - ) + P( A + B - C - ) P( B + C - ) = P( A + B + C - ) + P( A - B + C - ) Bell inequality: P( A - B + ) + P( A + C - )  P( B + C - )

35 12.05.200534 Realism refuted Local realism  Bell inequality Aspect: Bell inequality is violated  No local realism in Qu Mechanics Properties found in a measurement do not exist before the measurement

36 12.05.200535 Conceptual problems Paradoxes: Schroedinger cat etc. No reality previous to measurement Linear evolution c 1 |a 1  0  +c 2 |a 2  0   c 1 |a 1    +c 2 |a 2     reduction impossible

37 12.05.200536 Everett interpretation Linear evolution c 1 |a 1  0  +c 2 |a 2  0   c 1 |a 1    +c 2 |a 2    Many classical realities (many worlds) Selection = consciousness

38 12.05.200537 Quantum consciousness Qu world = many classical realities Consciousness = Selection Consciousness = selection of a class. reality Unconsciousness = all class. realities = qu world At the edge of consciousness (trance) Choice of reality (modification of probabilities) Contact with the quantum world (other realities)

39 12.05.200538 Conclusion Physics of measurements: entanglement Open systems = continuously measured ones Entanglement  Quantum informatics Conceptual problems: no selection in QM Everett: Selection = consciousness Quantum consciousness: choice of reality etc.

40 12.05.200539 Обзоры M.M., Квантовая механика и декогеренция, Москва, Физматлит, 2001 [translated from English (Quantum Measurements and Decoherence, Kluwer, Dordrecht etc., 2000)] M.M., Диссипация и декогеренция квантовых систем, УФН 173, 1199 (2003) [Physics-Uspekhi 46, 1163 (2003)] M.M., Понятие сознания в контексте квантовой механики, УФН 175, 413 (2005) [Physics-Uspekhi 175 (2005)

41 12.05.200540 Reviews M.M., Quantum Measurements and Decoherence. Kluwer, Dordrecht etc., 2000 [Russian: translation: Москва, Физматлит, 2001] M.M., Dissipation and decoherence of quantum systems, УФН 173, 1199 (2003) [Physics-Uspekhi 46, 1163 (2003)] M.M., Conception of consciousness in the context of quantum mechanics, УФН 175, 413 (2005) [Physics-Uspekhi 175 (2005)]

42 12.05.200541 Conceptual problems of QuantumMechanics M.M., Quantum mechanics: New experiments, new applications and new formulations of old questions, Physics-Uspekhi 43, 585-600 (2000). [ Russian: М.М., УФН 170, 631 (2000)] М.М., Conception of consciousness in the context of quantum mechanics, Physics-Uspekhi 175, No.4 (2005)] [ Russian: М.М., 175, 413 (2005)]

43 12.05.200542 Sections of the Talk Introduction Op en systems and continuous measurements Restricted Path Integrals (RPI) Non-minimally disturbing monitoring Realization by a series of soft observations Conclusion and reviews


Download ppt "Quantum measurements: status and problems Michael B. Mensky P.N.Lebedev Physical Institute Moscow, Russia MARKOV READINGS Moscow, May 12, 2005."

Similar presentations


Ads by Google