Download presentation
Presentation is loading. Please wait.
Published byDuane Charles Townsend Modified over 9 years ago
1
Trigonometric Equations Edited by Mr. Francis Hung Last Updated: 2008-12-04
2
Trigonometric Equations sin x = sin x = or 180 - sin x = sin 30 x = 30 or 180 - 30 x = 30 or 150 sin x = sin (-120 ) x = -120 or 180 -(-120 ) or -120 +360 x = 300 or 240
3
sin x = sin then x = or 180 - sin x = -1 x = -90 or 180 - (-90 ) x = 270
4
sin x = sin then x = or - sin x = 1.2 -1 sin x 1 x has no solution
5
cos x = cos 130 x = 130 or 360 - (130 ) x = 130 or 230 cos x = cos then x = or 360 - cos x = -0.9 x = 154 or 360 - 154 x = 154 or 206 cos x = -3 -1 cos x 1 x has no solution
6
cos x = cos then x = or 360 - cos x = cos (-20 ) cos x = cos 20 x = 20 or 360 - 20 x = 20 or 340 cos x = cos (-10 ) x = -10 or 360 - (-10 ) or 360 + (-10 ) or 10 x = 10 or 350
7
cos x = cos then x = or 2 - cos x = tan 0.5 c cos x = 0.5463 x = 0.9929 or 2 - 0.9929 x = 0.993 or 5.29
8
tan x = tan then x = or 180 + tan x = -1 x = -45 or 180 + (-45 ) or 360 + (-45 ) x = 135 or 315 tan x = 5 x = 78.7 or 259
9
tan x = tan then x = or 180 + sin x = -2cos x tan x = -2 x = -63.4 or 180 + (-63.4 ) or 360 + (-63.4 ) x = 117 or 297 tan x = -2 (sin 60 + 1) tan x = -3.73 x = 105 or 285
10
tan x = tan then x = or + tan x = -0.5 x = -0.464 c or - 0.464 c or 2 - 0.464 c x = 2.68 or 5.82
11
Exercise: solve the trigonometric equations 1.sin x = sin(-15 ) 195 or 345 2.Answer in radians: sin x = 0.6 0.644 or 2.50 3.Answer in terms of : 4.sin x = 7 no solution 5.cos x = cos -330 30 or 330 6.cos x = 0 x = 90 or 270 7.Answer in radians: cos x = -1/3 1.91 or 4.37
12
Exercise: solve the trigonometric equations 8.Answer in terms of : cos x = -1 9.Answer in terms of : cos x = -sin(3 /4) 3 /4 or 5 /4 10.Answer in terms of : 11.tan x = tan 540 0 , 180 or 360 12.3 sin x = 2 cos x 33.7 or 214 13.Answer in terms of : tan x = -1 x = 3 /4 or 7 /4 14.Answer in radians: tan x = 3 1.25 or 4.39
13
More difficult examples 1.cos 2x = cos 60 2x = 60 , 300 , 420 , 660 x = 30 , 150 , 210 , 330
14
More difficult examples 3.cos 2x = cos (10 + x) 2x = 10 + x or 2x = 360 - (10 + x) x = 10 or 116.67 Is there any other solution between 0 and 360 ? 236.67 , 356.67 4.2 cos 2 - 3 cos + 1 = 0 (2 cos - 1)(cos - 1) = 0 cos = 0.5 or cos = 1 = 60 , 300 or 0 , 360
15
More difficult examples 5.2 tan 2 + tan - 1 = 0 (Answer in radians.) (2 tan - 1)(tan + 1) = 0 tan = 0.5 or tan = -1 = 0.464 c, 3.61 c or 3 /4, 7 /4 6.cos 3x = sin 2x cos 3x = cos(90 - 2x) 3x = 90 - 2x or 3x = 360 - (90 - 2x) x = 18 or 270 Is there any other solution between 0 and 360 ? 90 , 162 , 234 , 306
16
More difficult examples 7.2 sin 2 - cos - 1 = 0 (Answer in terms of .) 2(1- cos 2 ) - cos - 1 = 0 2 cos 2 + cos - 1 = 0 (2 cos - 1)(cos + 1) = 0 cos = 0.5 or cos = -1 = /3, 5 /3 or 8.sin tan + cos = 1 (Answer in terms of .) sin ( sin / cos ) + cos = 1 sin 2 + cos 2 = cos cos = 1 = 0 c or 2
17
More difficult examples 9.3 - 2 sin cos - 4 sin 2 = 0 3(sin 2 + cos 2 ) - 2 sin cos - 4 sin 2 = 0 3 cos 2 - 2 sin cos - sin 2 = 0 3 - 2 tan - tan 2 = 0 tan 2 + 2 tan - 3 = 0 (tan + 3)(tan - 1) = 0 tan = -3 or tan = 1 = 108 , 288 or 45 , 225
18
More difficult examples 10.12 sin - 5 cos = 13 (answer in radians.) (12 sin - 5 cos ) 2 = 169 144 sin 2 -120sin cos +25cos 2 =169(sin 2 +cos 2 ) 25 sin 2 + 120 sin cos + 144 cos 2 = 0 25 tan 2 + 120 tan + 144 = 0 (5 tan + 12) 2 = 0 tan = -12/5 = 1.97 c, 5.11 c Check: when = 1.97 c, LHS = 12 sin 1.97 c - 5 cos 1.97 c = 13 = RHS when = 5.11 c, LHS = 12 sin 5.11 c - 5 cos 5.11 c = -13 RHS = 1.97 c only
19
Summary In degrees, sin x = sin then x = or 180 - cos x = cos then x = or 360 - tan x = tan then x = or 180 + In radians, sin x = sin then x = or - cos x = cos then x = or 2 - tan x = tan then x = or +
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.