Presentation is loading. Please wait.

Presentation is loading. Please wait.

Section 13.6a The Unit Circle.

Similar presentations


Presentation on theme: "Section 13.6a The Unit Circle."— Presentation transcript:

1 Section 13.6a The Unit Circle

2 Positive angle of rotation
The Unit Circle (like any circle) contains 360° It’s called the Unit Circle because the length of the radius is 1 π π/2 r = 1 Positive angle of rotation is counter clock-wise

3 ((opposite)/(hypotenuse)
The Unit Circle ((opposite)/(hypotenuse) 1 y (1, 0) x (adjacent) / (hypotenuse)) Therefore, the coordinates of any point on the circle are: (cos , sin )

4 Values of the Unit Circle
sin 30o = r = 1 30o cos 30o =

5 Values of the Unit Circle
sin 45o = r = 1 45o cos 45o =

6 Values of the Unit Circle
sin 60o = r = 1 60o cos 60o =

7 Values of the Unit Circle
sin 135o = cos 135o =

8 - - - - Signs of Trigonometric Functions + + + A S Quadrant + + +
Sin = Opp/Hyp Cos = Adj/Hyp Tan = Opp/Adj + + + A S Quadrant + + + - - - I - All + - II - Sin T C III - Tan IV - Cos All Students Take Calculus

9 1.) using the unit circle convert each measure from degrees to radians
a) 150° b) 225° c) 480° 2.) using the unit circle convert each measure from radians to degrees a) b) c)

10 3.) use the unit circle to find the exact value of each
a) sin 120° b) tan 225° 4.) use the unit circle to find sine, cosine and tangent of each a) b)

11

12 Homework Worksheet 13-3B


Download ppt "Section 13.6a The Unit Circle."

Similar presentations


Ads by Google