Download presentation
Presentation is loading. Please wait.
Published byJonas Washington Modified over 9 years ago
1
CHAPTER 4 – LESSON 1 How do you graph sine and cosine by unwrapping the unit circle?
2
Warm-Up/Activator Fill in the table (separate sheet) with the radian measure of the angles and then both the exact and approximate values for sine, cosine, and tangent of these angles.
5
Angle Chart for Unit Circle 030456090120135150180210225240270300315330360 0304560900304560906045306045300 0100 101 0 01-- 01 0 0 0 -- 1 1 1 --1 1 -- 0.5.707.8661.707.50-.5-.707-.866-.866-.707-.50 1.866.707.50 -.5-.707-.866-.866-.707-.50.5.707.8661 0.57711.7-- -1.7-.577 0.57711.7-- -1.7-.577 0 0 -1.7--1.71.5770-.577-1.7-- 1.71.577 11.151.4142---2-1.414-1.15-1.15-1.414-2--21.4141.151 --21.4141.151 1.414 2-- -2-1.414-1.15 -1.15 -1.414 -2-- 30-60-90 45-45-90
6
Graphs of Functions Sine
7
Graphs of Functions Cosine
8
Graphs of Functions Tangent
9
Graphs of Functions Sine Cosine
10
Graphs of Functions Tan Cotangent
11
Graphs of Functions Secant Cosecant
13
Chapter 4 - Lesson 2 Transforming Trig Functions Essential Question: How can we use the amplitude, period, phase shift and vertical shift to transform the sine and cosine curves? Key Question: How do the values of A, B, H, and K impact the shape of the trigonometric functions?
14
Warm-Up/Activator Complete the Exploring Sine Graphs Activity and Report findings to the class.
20
Alternate Activator Graph each equation without a calculator Y = 2(x -3) 2 + 1y = - (x + 2) 2 - 3
21
Transformations: Vertical Shift: the vertical movement of the graph (“new” x-axis) Phase Shift: the horizontal movement of the graph (“new” y-axis) Period: the number of degrees or radians required to draw one complete cycle of the curve Amplitude: the distance the curve is from the “new” x-axis
22
Transformation Equation Amplitude and Inversion Period Combine to give Horizontal Movement Vertical Movement
23
Transformations Vertical shift– K Phase shift– the opp of H/B Period– sin and cos 360/B tan 180/B Amplitude-- |A| the sign indicates if it is inverted
24
Example 1 y = 2 cos (3x) amp = period = phase =vertical =
25
Example 2 y = cos (1/3x ) amp = period = phase =vertical =
26
Example 3 y = cos(4x) + 2 amp = period = phase =vertical =
27
Example 4 y = cos(x+ Π ) + 1 amp = period = phase =vertical =
28
Example 5 y = 3 sin(2x – Π) + 1 amp = period = phase =vertical =
29
Example 6 y = -sin(4x) – 2 amp = period = phase =vertical =
30
Example 7 y = ½ cos(2x) + 2 amp = period = phase =vertical =
31
Example 8 y =2 cos(1/2x+ Π ) – 1 amp = period = phase =vertical =
33
Chapter 4 - Lesson 3 Sinusoidal Regressions Essential Question: How can sinusoidal regressions be used to model periodic data? Key Question: How do you use the calculator to find sinusoidal regressions?
36
Your Turn
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.