Download presentation
Presentation is loading. Please wait.
Published byAmice York Modified over 9 years ago
1
6.2.2 The Trigonometric Functions
2
The Functions Squared sin 2 ( ) = sin( ) 2 = sin( ) * sin( ) sin 2 ( ≠ sin ( 2 ) = sin ( * )
3
The Fundamental Identities Reciprocal Identities: The tangent and cotangent identities: The Pythagorean Identities:
4
sin 2 ( ) + cos 2 ( ) = 1 What happens if you divide by sin 2 ( )? What happens if you divide by cos 2 ( )? Use the tangent and cotangent identities
5
Uses: sin 2 ( ) + cos 2 ( ) = 1 sin( ) = sqrt( 1 - cos 2 ( )) and cos( ) = sqrt(1 - sin 2 ( ) ) tan( ) = sin( )/cos( ) = sin( )/ (sqrt(1 - sin 2 ( ) ))
6
New way to look at an angle, angles in standard position Sin ( ) = y/r Cos ( ) = x/r Tan ( ) = y/x O P(x,y) Q(x,0) X r (h) Y x y All 6 functions are defined so long as x,y ≠ 0 Sine and cosine are defined for all angles (Unit Circle)
7
Ex1) O P(15,8)r (h) x y r 2 = 15 2 + 8 2 = 225 + 64 = 289 = 17 2 r = 17 Sin = 15/17; cos = 8/17 tan = 8/15
8
Ti-83 Calculator Make sure you are in the right mode! Radian mode Degree mode Problems 27 and 29 require a calculator, table of values, or computer program to estimate
9
Using Identity properties 32) csc 2 (3a) – cot 2 (3a) = (1/ sin 2 (3a)) – (cos 2 (3a)/ sin 2 (3a)) = (1 – cos 2 (3a) )/ (sin 2 (3a)) sin 2 (3a)/sin 2 (3a) = 1
10
simplify 36) cot 2 (a) – 4 / (cot 2 (a) – cot (a) – 6) = (Cot (a) – 2) (cot (a) + 2) / ((cot(a) – 3)(cot(a) + 2) = cot(a) – 2 / cot(a) - 3
11
Homework P. 418 27- 35 odd, 38, 39 – 51 odd, 57, 67, 71
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.