Download presentation
Presentation is loading. Please wait.
Published byMargaretMargaret Goodwin Modified over 9 years ago
1
A chord of a circle is subtended by an angle of x degrees. The radius of the circle is 6 √ 2. What is the length of the minor arc subtended by the chord? We can work this out without a calculator. We can because we know about surds.
2
A chord of a circle is the hypotenuse of an isosceles right triangle whose legs are the radii of the circle. The radius of the circle is 6 √ 2. What is the length of the chord and the minor arc subtended by the chord? Find the chord using Pythagoras and surds and do not evaluate your answer.
3
A chord of a circle is the hypotenuse of an isosceles right triangle whose legs are the radii of the circle. The radius of the circle is 6 √ 2. What is the length of the chord? (6 √ 2) 2 + (6 √ 2) 2 = chord 2 (36 x 2) + (36 x 2) = chord 2 Chord = √ 144= 12
4
A chord of a circle is the hypotenuse of an isosceles right triangle whose legs are the radii of the circle. The radius of the circle is 6 √ 2. What is the length of the minor arc subtended by the chord? Find Circumference using surds and keep your answer in terms of π
5
A chord of a circle is the hypotenuse of an isosceles right triangle whose legs are the radii of the circle. The radius of the circle is 6 √ 2. What is the length of the minor arc subtended by the chord? Circumference = πD C = 2x6 √ 2 π C = 12 √ 2 π
6
A chord of a circle is the hypotenuse of an isosceles right triangle whose legs are the radii of the circle. The radius of the circle is 6 √ 2. What is the length of the minor arc subtended by the chord? C = 12 √ 2 π Minor arc = x12 √ 2 π Minor arc = 3 √ 2 π
7
A chord of a circle is the side of an equilateral triangle and equal to the radius of the circle. The radius of the circle is 6 √ 2. What is the length of the minor arc subtended by the chord? Remember C = 12 √ 2 π
8
A chord of a circle is the side of an equilateral triangle and equal to the radius of the circle. The radius of the circle is 6 √ 2. What is the length of the minor arc subtended by the chord? C = 12 √ 2 π Chord = x 12 √ 2 π Chord = 2 √ 2 π
9
A chord of a circle is subtended by an angle of x degrees. The radius of the circle is 6 √ 2. What is the length of the minor arc subtended by the chord? Remember C = 12 √ 2 π
10
A chord of a circle is subtended by an angle of x degrees. The radius of the circle is 6 √ 2. What is the length of the minor arc subtended by the chord? C = 12 √ 2 π Chord = x/360 X 12 √ 2 π Chord = x/30 √ 2 π Chord = x √ 2 π/30
11
Note Sometimes it is actually easier to work with surds! Do not be in a rush to evaluate π
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.