Download presentation
Presentation is loading. Please wait.
Published byEunice Spencer Modified over 9 years ago
1
QUIZ 5 Answers 1.) Pick one of the two “building blocks” of silicate clay minerals, tetrahedron or octahedron. Describe its elemental composition and what cations can be replacement ions in isomorphous substitution. Diagrams/pictures encouraged. tetrahedron: 4O, 1Si, Fe 3+ or Al 3+ can replace Si 4+ octahedron: 6O, dioctahedral: 2 AlFe 3+, Al 3+, Mg 2+, Zn 2+, Fe 2+ (2) trioctahedral: 3 Mg 2.) Match the colloid name with its mineral type: (4) a. Kaolinite__y___x. 2:1 expanding Si clay b. Vermiculite__x___y. 1:1 non-expanding Si clay c. Mica__z___z. 2:1 non-expanding Si clay d. Goethite__q___q. non-Si clay 3.) A soil contains 5% humus, 10% vermiculite, 20% kaolinite, and 10% gibbsite. What is its approximate cation exchange capacity? (Table 8.5 on reverse side.) (2) 27 cmol c /kg 4.) Data from the Holmgren article showed that Ultisols had the lowest CEC of all the soil orders sampled. Does this make sense? Explain. (2) yes, ultisols are very weathered soils, which means they have generally larger amounts of 1:1 type clays and Fe/Al oxides and generally lower amounts of 2:1 clays: 1:1 type and Fe/Al oxides clays have less isomorphous substitution thus less negative charge and less CEC.
2
Soil Aeration
3
I.Process of Soil Aeration II.Characterizing Soil Aeration III.Factors Affecting Soil Aeration IV.Ecosystem Effects of Soil Aeration
4
I. Process of Soil Aeration A.O 2 availability in field 1.soil macroporosity (texture/structure) 2.soil water content (proportion of porosity filled with air) 3.O 2 consumption by respiring organisms (plant roots and microbes) B.Excess Moisture 1.water saturated/waterlogged: condition when all or nearly all of the soil pores are filled with H 2 O 2.adaption C.Gas exchange 1.mass flow 2.diffusion (Fig. 7.3)
5
Fig. 7.3 = diffusion
7
II. Characterizing Soil Aeration A.Composition 1.O 2 2.CO 2 (Fig. 7.8) 3.other gases B.Air-filled porosity 1.ideal composition 2.O 2 diffusion through water<<<<<air C.Chemical redox potential 1.redox rxns 2.role of O 2 3.other e - acceptors (Table 7.1)
8
Fig. 7.8 = CO 2
9
II. Characterizing Soil Aeration A.Composition 1.O 2 2.CO 2 (Fig. 7.8) 3.other gases B.Air-filled porosity 1.ideal composition 2.O 2 diffusion through water<<<<<air C.Chemical redox potential 1.redox rxns 2.role of O 2 3.other e - acceptors (Table 7.1)
11
Redox Reactions
13
Table 7.1 = other e - acceptors
15
III. Factors Affecting Soil Aeration A.Drainage B.Rates of respiration C.Subsoil vs. topsoil D.Soil heterogeneity E.Seasonal differences F.Effects of vegetation
16
III. Factors Affecting Soil Aeration A.Drainage 1.Why are macropores important to soil aeration? B.Rates of respiration 2. What management activities can alter soil air composition? C.Subsoil vs. topsoil 3. Why do subsoils have lower O 2 concentrations than surface soils? D.Soil heterogeneity 4.How do O 2 and CO 2 concentrations change within a profile? 5.What effect does tillage have on aeration? E.Seasonal differences 6. Contrast spring vs. summer soil aeration. F.Effects of vegetation 7. What is an effect of one specific type of vegetation on soil aeration?
17
III. Ecosystem Effects of Soil Aeration A.Ecological B.Soil and plant management C.Wetlands
19
Exam Review TEXTBOOK CHAPTERS –anything covered in class –suggested study ?’s –calculations ASSIGNED READINGS –suggested study ?’s FRIDAY DEMO/DISCUSSION/FIELD TRIPS –handouts
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.