Download presentation
Presentation is loading. Please wait.
Published byDaniel Cain Modified over 9 years ago
2
Define cellular respiration Cell respiration is the controlled release of energy from organic compounds in cells to form ATP Covalent bonds are slowly oxidized by enzymes releasing ATP molecules Takes place in the presence or in absence of oxygen
3
Know These Numbers
4
Glycolysis glucose + 2 ATP 2 pyruvate + 4 ATP + 2 NADPH The breakdown of one molecule of glucose into two molecules of pyruvate with the release of some energy Takes place in the cytoplasm Does not require oxygen Glycolysis Video Glycolysis Video
5
Alcoholic Fermentation Done when no oxygen is present Starts with glycolysis The pyruvate is then broken down further Yeast turn the pyruvate into ethanol and carbon dioxide Used to make bread and alcohol
6
Lactic Acid Fermentation Cell that normally do aerobic respiration can perform fermentation Done when you sprint and the body can not supply the muscles with enough oxygen to perform aerobic respiration Can cause muscle cramps
7
Aerobic cellular respiration In the presence of oxygen pyruvate is broken down in the mitochondria into carbon dioxide and water This is the most efficient use of this molecule to harvest energy Reaction takes place in the mitochondria Yields approximately 28- 34 more ATP
9
Oxidation and Reduction Redox (reduction – oxidation) reaction: the enzyme controlled transfer of electrons Oxidation Is the Loss of electrons Involves gaining an oxygen or losing a hydrogen Energy is lost (exergonic reaction) In respiration glucose is oxidised to carbon dioxide All hydrogens are gradually removed from the glucose molecule Reduction Is the Gain of electrons Involves losing oxygen or gaining hydrogen Energy is absorbed (endergonic reaction) This substance now has the power to reduce other substances and become oxidised in the process In respiration oxygen is reduced to water Remember it by the saying OIL RIG
10
OxidationReduction Loss of electronsGain of electrons Gain of oxygenLoss of oxygen Loss of hydrogenGain of hydrogen Results in many C-O bondsResults in many C-H bonds Result is a compound with low potential (stored) energy Result is compound with high potential (stored) energy
11
Glycolysis Linear series of reactions in which glucose is broken down into 2 molecules of pyruvate Glycolysis takes place in the cytoplasm Glucose + 2ADP + 2P i + 2NAD + 2Pyruvate + 2ATP + 2NADH + 2H + + 2H 2 0 Anaerobic process that does not require oxygen Glycolysis takes a 6-carbon hexose sugar and created 2 3-carbon monosaccharides The first step is phosphorylation ATP is used to add a phosphate group to the glucose A second phosphorylation using another ATP follows adding a second phosphate This creates fructose biphosphate 2 molecules of ATP are consumed for every molecule of glucose at this point
12
Glycolysis Cont. The second step is lysis o Fructose biphosphate is split producing 2 triose phosphate molecules each with 3 carbons The third step is oxidation o The above chemicals are then involved in a combined oxidation phosphorylation reaction o Hydrogen is removed from the triose phosphates o NAD acts as the hydrogen receptor The last step is ATP formation o Lastly the triose biphosphate gives up one of the phosphates to ADP to make it ATP and producing pyruvate Total ATP production for each glucose molecule is 4 but the NET gain is only 2 o Remember we spent 2 ATP at the beginning to start the process
14
Electron Micrograph of a Mitochondria
15
Micrograph Explained Found in the cytoplasm of all Eukaryotic cells, usually in large numbers Large organelle surrounded by an outer membrane and an inner membrane Inner membrane is folded – cristae Between the inner membrane and the outer membrane is the matrix Inside is a watery fluid containing enzymes and molecules There are also ribosomes and DNA The DNA is maternal DNA and can be used to trace heredity
17
Structure and Function StructureFunction / Role External Double MembranePermeable to pyruvate, CO 2, O 2 and NAD/NADH MatrixSite of enzymes of link reaction and Krebs cycle Inner MembraneSurface area greatly increased by in tucking to form cristae (increases surface area for electron chain), impermeable to hydrogen ions (allows for a concentration gradient to be created Inter-membrane SpaceRelatively tiny space, allows the accumulation of hydrogen atoms, facilitates phosphorylation
18
Aerobic Respiration Link Reaction Forms the link between glycolysis and the Krebs cycle Pyruvate is transferred from the cytoplasm to the mitochondrial matrix Pyruvate + CoA + NAD + Acetyl CoA + CO 2 + NADH + H + This reaction is known as decaboxylation of pyruvate A carbon dioxide is removed The molecule is also oxidised by the removal of a hydrogen NAD is formed at this time
19
Aerobic Respiration Krebs Cycle Also known as tricarboxylic citric acid cycle or TCA cycle Occurs in the matrix of the mitochondria 1 molecule of acetyl CoA yields 2 CO 2 3 NADH + 3H + 1 FADH 2 1 ATP
20
Krebs Cycle Details Acetyl CoA combines with a 4-carbon compound to create a 6-carbon compound This compound is then decarboxylated A CO 2 is removed 5-carbon compound is created The 5-carbon compound is decarboxylated A CO 2 is removed 4-carbon compound is created This takes us back the original 4-carbon compound that starts the cycle The main outputs are energy freed from the compounds
21
Krebs Cycle Important Notes per molecule that enters Two molecules of carbon dioxide are given off in separate decaboxylation reactions One molecule of ATP is formed Three molecules of NADH (aka reduced NAD) are formed One molecule of FADH (aka reduced FAD) is formed
22
Summary to this Point StepCO 2 ATPNADHFADH Glycolysis 0220 Link Reaction 2020 Krebs Cycle 4262 Totals 6 CO 2 4 ATP10 NADH 2 FADH
23
Terminal Oxidation and oxidative phosphorylation A.K.A. – the electron transport chain The removal of H + from NADH and FADH Releases energy that is transferred to ADP to form ATP End receiver of the H + is O 2 and this forms water For every molecule of NADH that is reduced – 3 ATP are formed Total yield from aerobic respiration is 38 ATPs
24
Phosphorylation by Chemiosmosis The synthesis of ATP is coupled to electron transport via the movement of protons Electron –carrier proteins are arranged in the inner mitochondrial membrane Oxidize the reduced coenzymes Energy from the oxidation is used to pump hydrogen ions from the matrix into the space between the inner and outer membranes of the mitochondria A gradient forms generating a potential difference across the membrane – a store of potential energy Hydrogens flow back across the membrane through ATP synthesis enzymes (ATPase) Follow the concentration gradient from high hydrogen to low hydrogen Energy is transferred to ATP
25
Role in Fat Metabolism Your body can plug other things into the Krebs cycle to generate energy including Starch Glycerol Fatty acids Amino acids Plants can also add cellulose to this list Explains why fats are considered to be energy sources to the body
26
Cheesy Songs Song 1 Song 1 Song 2 Song 2
27
Bozeman We love bozeman We love bozeman
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.