Download presentation
Presentation is loading. Please wait.
1
Single-shot read-out of one electron spin
QIP Workshop Newton Institute, Cambridge 27-30 Sep. 2004 Lieven Vandersypen Jeroen Elzerman Ronald Hanson Laurens Willems van Beveren Frank Koppens Ivo Vink Wouter Naber Leo Kouwenhoven
2
A seven-spin NMR quantum computer
Vandersypen et al., Nature 414, 883 (2001) Vandersypen & Chuang, RMP, Oct 2004. F 13C 12C C5H5 CO Fe 1 3 5 4 2 6 7 15 = 3 x 5
3
Quantum computing with electron spins
Loss & DiVincenzo, PRA 1998 Vandersypen et al., Proc. MQC02 (quant-ph/ ) SL SR Initialization electron, low T, high B0 H0 ~ S wi szi Read-out convert spin to charge then measure charge Read-out convert spin to charge then measure charge ESR pulsed microwave magnetic field HRF ~ S Ai(t) cos(wi t) sxi SWAP exchange interaction HJ ~ S Jij (t) si · sj Coherence measure coherence time in 2DEG: T2 > 100 ns (Kikkawa&Awschalom, 1998)
4
Electrical single-shot spin measurement
Convert spin to charge, then measure charge Loss & DiVincenzo, PRA 1998
5
Outline (1) one-electron quantum dots… (3) …fast charge detection…
(4) ….single spin measurement! (2) …two-level system… EZ = gmBB
6
Outline: we need… (1) one-electron double dots…
(3) …fast charge detection… (4) ….single spin measurement! (2) …two-level system… EZ = gmBB
7
A quantum dot as a one-electron box
Electrically measured (contact to 2DEG) Electrically controlled (gated tunnel barriers, dot potential)
8
A quantum point contact (QPC) as a charge detector
Field et al, PRL 1993
9
Few-electron double dot Transport through QPC
J.M. Elzerman et al., PRB 67, R (2003) -0.96 -1.02 -0.15 -0.30 00 10 01 11 22 21 12 V L (V) PR dIQPC/dVL 0 Tesla -1.1 00 V L (V) -0.9 V PR (V) -0.6 Double dot can be emptied QPC can detect all charge transitions
10
Outline: we need… (1) one-electron double dots…
(3) …fast charge detection… (4) ….single spin measurement! (2) …two-level system… EZ = gmBB
11
Energy level spectroscopy at B = 0
10 dIDOT/dVSD DRAIN SOURCE G 200 nm M P R Q T VSD (mV) N=1 N=0 Ground and excited state No transport Ground state B = 0 T -10 -653 -695 VT (mV) E ~ 1.1meV EC ~ 2.5meV
12
Single electron Zeeman splitting in B//
2 -2 N=0 VSD (mV) GS ES Hanson et al, PRL 91, (2003) Also: Potok et al, PRL 91, (2003) B=0 B > 0 gmBB -675 VT (mV) N=1 2 -2 -657 6 T VSD (mV) N=0 -995 -1010 VR (mV) 10 T N=0 5 10 15 0.1 0.2 B// (T) DEZ (meV) |g|=0.44
13
Excited-state spectroscopy on a nearly-closed quantum dot
Elzerman et al, APL 84, 4617, 2004 Also: Johnson, cond-mat/04 T DRAIN t t IQPC -VP time RESERVOIR Q DIQPC time 200 nm M P R SOURCE G EF Make sure scale bar is correct! G Apply pulse train to gate P Measure amplitude of pulse-response with lock-in amplifier Electron tunneling small pulse response
14
Zeeman splitting for N = 1
10 DEZ lock-in signal (arb.units) VP (mV) B = 10 T N = 1 N = 0 -1.135 VM (V) -1.150 f = 385 Hz 1 -1.13 VM (V) -1.15 Make sure scale bar is correct! Geff G
15
Bipolar spin filter N=1 N=0 N=1 N=2 VSD (mV) Gate voltage VSD (mV)
VSD (mV) N=1 N=0 Gate voltage VSD (mV) Gate voltage N=1 N=2 S T+ T- T0 Expt: Hanson et al, cond-mat/ , Theory: Recher et al, PRL 85,1962, 2000
16
Outline: we need… (1) one-electron double dots…
(3) …fast charge detection… (4) ….single spin measurement! (2) …two-level system… EZ = gmBB
17
Fast charge detection G VA = 0.8nV/Hz1/2 (white)
DRAIN VA = 0.8nV/Hz1/2 (white) IA = kHz (~ f ) CL = 1.5 nF Operating BW: 40 kHz Shot-noise limit: 40 MHz RESERVOIR IQPC Q G 200 nm M P R SOURCE
18
Observation of individual tunnel events
Vandersypen et al, APL, to appear (see cond-mat/ ) T DRAIN RESERVOIR IQPC Q G 200 nm M P R SOURCE VSD = 1 mV IQPC ~ 30 nA ∆IQPC ~ 0.3 nA Shortest steps ~ 8 µs
19
Pulse-induced tunneling
response to electron tunneling 0.8 response to pulse DIQPC (nA) 0.4 0.0 -0.4 0.5 1.0 1.5 Time (ms)
20
Outline: we need… (1) one-electron double dots…
(3) …fast charge detection… (4) ….single spin measurement! (2) …two-level system… EZ = gmBB
21
Spin read-out principle: convert spin to charge
SPIN UP -e N = 1 time charge SPIN DOWN -e time N = 1 N = 0 N = 1 ~G-1
22
Spin read-out procedure
inject & wait read-out spin empty QD empty QD Vpulse DIQPC Inspiration: Fujisawa et al., Nature 419, 279, 2002
23
Spin read-out results Vpulse DIQPC DIQPC (nA) Time (ms) Time (ms) 2
Elzerman et al., Nature 430, 431, 2004 inject & wait read-out spin empty QD empty QD Vpulse DIQPC 2 “SPIN UP” “SPIN DOWN” DIQPC (nA) 1 0.5 1.0 1.5 0.5 1.0 1.5 Time (ms) Time (ms)
24
Verification spin read-out
Spin down fraction oc09-710 -1230 W3 0 W12 G9-2340 G G G B 10T (?) Waiting time (ms)
25
Measurement of T1 Surprisingly long T1 T1 goes up at low B B = 8 T
T1 ~ 0.85 ms Measurement of T1 B = 10 T T1 ~ 0.55 ms Surprisingly long T1 T1 goes up at low B B = 14 T T1 ~ 0.12 ms Elzerman et al., Nature 430, 431, 2004
26
Single-shot read-out fidelity
1.0 spin: outcome: 0.8 0.93 “up” 0.6 a 1-b a=0.07 65% 0.4 b=0.28 0.2 “down” 0.0 0.72 0.6 0.8 1.0 visibility = 1-a-b 0.65 Threshold (nA) a = Pr[ escapes] b = Pr[miss step] Pr[ relaxes] Future improvements: a: lower Tel b: faster charge detection
27
Outlook SL SR Initialization 1 electron, low T, high B0 H0 ~ S wi szi
Read-out convert spin to charge then measure charge ESR pulsed microwave magnetic field HRF ~ S Ai(t) cos(wi t) sxi SWAP exchange interaction HJ ~ S Jij (t) si · sj Coherence measure coherence time T1 is long; T2 = ??
28
Single Electron Spin Resonance
z S y B1 S’ B0 fres fLarmor W W 250 μm x 250 nm IAC B1 B0 B1 = 1 mT fRabi~ 5 MHz
29
Detection of Continuous Wave ESR
Engel & Loss, PRL 86, 4648 (`01) ISD mS mD GL GR ESR induced current peak GL, GR =10 MHz T2 =100 ns For 1.1 mT (~ -10dBm) Peak is only 300 fA 300 fA
30
Electron transport under CW microwaves
gate voltage (V) -1.023 -1.029 I (pA) 0.8 0.0 from -60dBm to -40dBm hf hf Photon Assisted Tunneling Pumping Electric field dominates signal!
31
Pulsed ESR scheme Apply microwaves Read out spin state
electric field component no longer hinders ESR detection
32
ESR in a Si-FET channel M. Xiao et al. Nature 430, 435 (‘04)
33
Summary Spin qubit ideas Tunable few-electron double dot
Spin qubit ideas 00 Vandersypen et al, Proc. MQC02,quant-ph/ Engel et al. PRL (to appear) Tunable few-electron double dot Elzerman et al., PRB 67, R161308, 2003 DC or LOCK-IN SINGLE-SHOT Zeeman splitting Fast charge detection Hanson et al, PRL 91, , 2003 Vandersypen et al, APL to appear, cond-mat/ Bipolar spin filter Single-shot spin read-out T1 ~ 0.85 ms (8 T) Hanson et al, cond-mat/ Excited states using QPC Elzerman et al, Nature 430, 431, 2004 Elzerman et al, APL 84, 4617, 2004
35
Tunable double dot design
Ciorga ’99 Open design IDOT QPC-L QPC-R IQPC IQPC Field ’93 Sprinzak ’01 PL PR L M R QPC for charge detection GaAs/AlGaAs heterostructure 2DEG 90 nm deep ns = 2.9 x 1011 cm-2
36
Few-electron double dot Transport through dots
J.M. Elzerman et al., PRB 67, R (2003) -0.96 -1.02 -0.15 -0.30 00 10 01 11 22 21 12 V L (V) PR Peak height 1 pA 2 pA 70 pA
37
Tunnel process is stochastic
out DIQPC (nA) out in Time (ms) Time (ms)
38
Histograms tunnel time
G ~ (60 ms)-1 G ~ (230 ms)-1 Increase tunnel barrier DI QPC [a.u.]
39
More spin-down traces twait tread DIQPC (nA) thold Time (ms) 2 1 1.0
0.5 tread twait thold 2 DIQPC (nA) 1 1.5 Time (ms)
40
Read-out characterization
spin: outcome: 1-a “up” a b “down” 1-b
41
Characterization: a = Pr [“down” if ]
p (1- b - a) exp(- t / T1) + a Spin down fraction 1.0 0.8 Waiting time (ms) a 0.6 0.4 Time (ms) 1.0 0.5 1.5 DIQPC (nA) 1 2 0.2 0.0 0.6 0.8 1.0 Threshold (nA)
42
Characterization: b = Pr [“up” if ]
b1 = Pr [ flips before tunneling ] 1-b = (1-b1)(1-b2) + ab1 1/T1 1 = 1/T1 + G 1 + G T1 1.0 1-b2 0.8 b2 = Pr [ miss step ] 0.6 a 1-b 0.4 1 DIQPC (nA) 0.2 0.0 0.6 0.8 1.0 Threshold (nA) Time (ms)
43
Finding the spin read-out regime
44
Alternative spin read-out schemes (2)
gl = gd EF need gl gd gl exchange enhanced (2 DEG, Englert et al, von Klitzing et al) Etriplet > Esinglet (Tarucha et al, Loss et al) N=2 Vandersypen et al, Proc. MQC02, see quant-ph/
45
Alternative spin read-out schemes
| = (| - |) + (| + |) = |S |T0 Engel et al, PRL, to appear (cond-mat/ ) See also: Ono et al, Science, 2002
46
Weakly coupled dots B// = 6 Tesla dIQPC/dVPR Right gate (mV)
-1000 dIQPC/dVPR 30 40 20 10 B// = 6 Tesla 00 31 21 11 42 01 32 Right gate (mV) 22 12 02 33 23 13 03 34 24 14 04 -867 -900 Left gate (mV) -1100 QPC gate (mV) -1108 -800
47
Strongly coupled dots B// = 6 Tesla dIQPC/dVPR Right gate (mV)
-1167 dIQPC/dVPR B// = 6 Tesla Right gate (mV) 00 -933 -967 Left gate (mV) -1167 QPC gate (mV) -1000 -700
48
Electron response reveals tunnel rate
dip height (%) 100 370 t (ms) VM (V) -1.07 -1.40 VR (V) -0.76 -0.96 f = 4.17 kHz 1 2 3 4 5 6 7 8 t = 15 ms 45 lock-in signal (arb.units) 90 180 300 -1.12 VM (V) -1.13 oc24766B -430 W3 0 W12 G B 10T (?) Electron response (dip) disappears for high frequencies (small t) Dip half-developed when Gt p Top: barrier to drain closed Right: barrier to reservoir closed Middle: both closed
49
Singlet-triplet and Zeeman for N = 2
10 DEST 10 VP (mV) VP (mV) N = 2 N = 1 N = 2 N = 1 f = 385 Hz f = kHz 1 1 -1.160 VM (V) -1.175 -1.160 VM (V) -1.175 (smooth 3) oc28-781 -430 W3 0 W12 G G G B 10T (?) G Geff S S
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.