Presentation is loading. Please wait.

Presentation is loading. Please wait.

The Coeval of Starburst and BH Growing X.Y.Xia Tianjin Normal University, China.

Similar presentations


Presentation on theme: "The Coeval of Starburst and BH Growing X.Y.Xia Tianjin Normal University, China."— Presentation transcript:

1 The Coeval of Starburst and BH Growing X.Y.Xia Tianjin Normal University, China

2 Outline The Relation of Bulge and BH ( M-σ 关系 ) Ferrarese & Merrit , 2000 , Tremaine et al. 2002 The Star Formation History and Distribution of QSOs 星系中心黑洞的增长与星系核球中恒星的形成过程的紧密联系。这使人 们开始认识到星系的形成过程与星系中心黑洞的增长、与星系核的活动 密切相关,即星系中心的黑洞参与并影响了其 “ 宿主 ” 星系的演化过程 ( Heckman et al. 2004; Springel et al. ) 星系相互作用和并合的观测证据 星暴和 AGN

3

4

5 Galaxy Structure Flat disk: 10 11 stars (Pop.I) ISM (gas, dust) 5% of the Galaxy mass, 90% of the visible light Active star formation since 10 Gyr. Central bulge: moderately old stars with low specific angular momentum. Wide range of metallicity Triaxial shape (central bar) Central supermassive BH Stellar Halo 10 9 old and metal poor stars (Pop.II) 150 globular clusters (13 Gyr) <0.2% Galaxy mass, 2% of the light Dark Halo

6 M    关系 对超重质量黑洞进行 观测的一个重要结 果发现,星系超重 质量黑洞质量与星系 核球光度很好地相 关, 但与整个星系 性质 ( 如,光度 ) 不 相关。

7

8

9

10 Galactic Cannibalism Computer Simulation

11 Outline The Relation of Bulge and BH ( M-σ 关系 ) Ferrarese & Merrit , 2000 , Tremaine et al. 2002 The Star Formation History and Distribution of QSOs 星系中心黑洞的增长与星系核球中恒星的形成过程的紧密联系。这使人 们开始认识到星系的形成过程与星系中心黑洞的增长、与星系核的活动 密切相关,即星系中心的黑洞参与并影响了其 “ 宿主 ” 星系的演化过程 ( Heckman et al. 2004; Springel et al. ) 星系相互作用和并合的观测证据 星暴和 AGN

12

13

14

15

16

17

18

19

20

21 Outline The Relation of Bulge and BH ( M-σ 关系 ) Ferrarese & Merrit , 2000 , Tremaine et al. 2002 The Star Formation History and Distribution of QSOs 星系中心黑洞的增长与星系核球中恒星的形成过程的 紧密联系。使人们开始认识到星系的形成过程与星系 中心黑洞的增长、与星系核的活动密切相关,即星系 中心的黑洞参与并影响了其 “ 宿主 ” 星系的演化过程 (Heckman et al. 2004; Springel et al. ) 星系相互作用和并合的观测证据 星暴和 AGN

22 Outline The Relation of Bulge and BH ( M-σ 关系 ) Ferrarese & Merrit , 2000 , Tremaine et al. 2002 The Star Formation History and Distribution of QSOs 星系中心黑洞的增长与星系核球中恒星的形成过程的紧密联系。这使人 们开始认识到星系的形成过程与星系中心黑洞的增长、与星系核的活动 密切相关,即星系中心的黑洞参与并影响了其 “ 宿主 ” 星系的演化过程 ( Heckman et al. 2004; Springel et al. ) 星系相互作用和并合的观测证据 星暴和 AGN

23

24 HUDF

25

26 CDM - Hierarchical scenario Springel et al, 2001, MNRAS, 228, 726: high resolution N-body simulation of the evolution of clusters of galaxies

27

28

29 Interacting

30 worlds collide

31 Pair

32

33 Cartwheel Galaxy

34

35 Chandra Image of NGC 6240

36 HST I-band image of “cool” ULIRGs

37

38

39 IR 18580+6527

40 Three galaxies, M81 ( big ), M82 ( medium ), and NGC 3077 ( small ). Are they related to one another?

41

42

43 CO on the optical HST image Downes & Solomon 98 The molecular emission is highly concentrated within 1kpc or even smaller, cf Arp220 Two disks are merging, as seen in the dispersion, and mm continuum

44 Mihos & Hernquist 96 Simulations of disk/halo galaxies Gas and young stars are plotted

45

46 Outline The Relation of Bulge and BH ( M-σ 关系 ) Ferrarese & Merrit , 2000 , Tremaine et al. 2002 The Star Formation History and Distribution of QSOs 星系中心黑洞的增长与星系核球中恒星的形成过程的紧密联系。这使人 们开始认识到星系的形成过程与星系中心黑洞的增长、与星系核的活动 密切相关,即星系中心的黑洞参与并影响了其 “ 宿主 ” 星系的演化过程 ( Heckman et al. 2004; Springel et al. ) 星系相互作用和并合的观测证据 星暴和 AGN

47 Heckman & Kauffman, 2004, based on 23000 SDSS narrow emission line galaxies

48 The Host Galaxies of IR QSOs Have Same Pofile as Optical QSOs

49

50

51

52

53

54 Host Galaxies of Nearby QSOs Hutching et al. Astro/ph-0202401

55 Two components of host galaxies of z=2 QSOs

56

57 SMGs: strongest starbursts in the Universe  Giant starbursts at the peak of elliptical formation z ~ 2-3  1-4  At least Ultra-Luminous Infra-Red Galaxies (ULIRGs): L FIR >~ 10 12 Lo, SFR > 100 Mo/yr Relatively rare, but ~1 per arcmin 2 Generally not isolated; strongly biased along high-z Large Scale Structures Probably progenitors of massive elliptical galaxies A few of these objects are powerful QSOs or radiogalaxies  M BH >~ 10 8 Mo  Most exceptional Hyper-Luminous IR Galaxies (HLIRGs): L FIR >~ 10 13 Lo, SFR ~ 1000 Mo/yr Nothing equivalent in the local Universe Very rare ~1 per 100 arcmin 2 CO already detectable Probably in most massive DM halos  progenitors of central cD galaxies of clusters A fraction of them are very powerful QSOs or radiogalaxies  M BH >~ 10 8 Mo

58 Landmarks and questions of the evolution of most massive galaxies and associated super-massive black-holes Final mass 10 11 – 10 12 Mo z ~ 4 - 10 Major starbursts in the 1st billion yr at DM density peaks (first LSSs) LBGs & Ly  Galaxies SMGs: ULIRGs & HLIRGs ? 1.5 ~< z <~ 3 Peak of starburst SMGs SCUBA/MAMBO counts Mergers & pre-clustering ? CO detection Detection in Spitzer wide surveys + Distant Red Galaxies ?  z < 1-1.5 Decline of SMGs mostly passive evolution (+stellar mergers)  massive elliptical galaxies + supermassive cD cluster galaxies Final black-hole mass 10 8 – 10 9 Mo First SMBHs  M BH ~ 10 9 Mo A few most powerful QSOs  z=6.4 Fewer Radio Galaxies  z >~4 Major phase of SMBH growth   Peak of QSO activity Weak AGN activity in most SMGs X-absorbed QSOs and Type 2 QSOs Spitzer IR QSOs ?  SMBH mergers ? Very few powerful QSOs Dormant most massive SMBHs  QSO Feedback 

59 from Bertoldi, Voss, Walter L fir = 4x10 12 S 250 (mJy) L sun FIR emission of cold dust (T d ~ 35-50 K) : - steep submm spectrum - compensates for distance - S practically independent of z from z ~ 0.5 to 10 Effect also known as « negative K correction » Redshift degeneracy Dust detection: The Magic of the high-z submm window

60 SCUBA (+MAMBO) submm counts SCUBA(-radio) redshift distribution Chapman, Blain, Ivison, Smail 2003 SCUBA(-MAMBO) census of high-z ULIRGs Take advantage of steep submm spectrum Account for most of submm background z at Keck for radio ones (~50%) (weak AGN ?)  History of star formation up to z~3-4 Small but uncertain number at z > 4 Dust detection: the magic of the submm window

61 Dense gas density ~10 5 cm -3 T ~ 100 K size R ~400-1400 pc gaz mass 1-2 10 10 Mo CO detection in QSO SDSS J1148 at z=6.42 Bertoldi et al. 03 PdBI Walter et al. 03 VLA Multi-line excitation model Resolution of CO in 2 sources VLA Walter et al. 04 CO detection in 14 high-z QSOs

62 Molecular Gas in SCUBA submm Galaxies Greve et al. (2004) 1 < z < 3.5 = 3.0 10 10 Msun ~5 times more gas and luminous, than local ULIRGs Broad FWHM linewidth Complex/interactive environment (+weak AGN) M gas significant fraction of central mass

63 Current conclusions of our study of our high-z QSO-hosts HLIRGs in the light of SMG studies and feedback models for QSO/spheroids  Such huge starbursts exist at least up to z=6, and our sample is by far the largest one of ULIRGs at z>4  In the feedback model, they should be in the terminal phase of the ULIRG/AGN episode; both the starburst and the QSO should soon stop, starved of gas (maybe waiting for the next major merger)  The near independence of from L bol should result of some compensation between the QSO destructive action and the stability of the starburst depending on the spheroid mass, not yet fully clear  The recent X-Ray results of Oliver et al. 2005 explain well the growth of black-holes during the SMG phase up to 10 8 Mo. It would be interesting to check whether and which SMGs allow them to grow up to 10 9 Mo

64 z D phot (Gpc) 1000 -------------------- 20 230 12 130 -------------------- z= 6 60 -------------------- z=2 16 ------------------- 0.5 3 -------------------- 0 ~ 300 million ~ 3.5 billion z ~ 7 – 20 ? - Reionization PopIII stars +1st galaxies -Formation of 1st galaxies Pop. II stars - First AGN z ~ 4 – 7 : Current frontier - Galaxy and Black-Hole early assembly - End of reionization z ~ 1.5 -4: - Peak of star formation submm sources + LBGs -Peak of QSO activity -Luminous mid-IR sour. -Proto-cluster formation z ~ 0.5-1.5 : Final phase of active SF - Mid-IR sources - Weak X-ray AGN - Cluster formation Main z ranges in the Cosmic History of galaxies

65 Key Points 如何确定恒星形成率? 如何确定星系中心黑洞的吸积率? 恒星形成和 AGN 的反馈过程( feedback )

66 SFR 光学或紫外连续谱 远红外连续谱 射电连续谱或复合线( Ha 或 OII 发射线)强度。 每一种方法都有其局限性和问题,这给了解星系的恒星形成历史 带来很大的不确定性。特别是当星暴和 AGN 共生的情况下,星暴 和 AGN 对各波段的辐射都会有贡献。认识、了解和区分在宇宙演 化的每一个阶段恒星形成和 AGN 对辐射的贡献非常困难,但又是 必须首先解决的问题。所以,寻找新的、更可靠的确定恒星形成 率的方法是急待解决的问题。多波段的观测资料恰恰可以提供基 于全波段 SED (光谱能量分布)或某些仅与恒星形成有关的特征 谱线来可靠地测量恒星形成率的可能。

67 如何确定星系中心黑洞的吸积率 从观测上是通过测量星系中心 AGN 辐射的总的 热光度来确定黑洞吸积率的。一般情况下并不 是基于全波段的 SED 来测量总的辐射热光度, 而是用由经验关系和理论模型结合,基于单一 波段的测量来确定总的辐射热光度,从而确定 黑洞吸积率。因此,黑洞吸积率的测量也有很 大的不确定性。但是,如果用多波段的观测资 料,建立亮类星体样本的 SED ,基于全波段的 SED 来确定类星体热光度,这将降低对吸积率 计算的误差;并可以用来更准确地建立对一般 类星体的热光度的定标。

68 Thank You

69 Infrared Excess QSOs

70 IR QSOs are in transitionary stage Strong FeII emitters High Eddington ratio Steep x-ray slop at one extreme end of Eigenvecgtor 1 and they are young QSOs Starburst

71 Key point The starburst and central AGN give main contributions at different waveband By comparing optical and IR QSOs sample, It is possible to separate the contributions Determining SFR and Mdot

72 IR QSOs at Low redshift (1) IR QSO sample Zheng et al. (2002) (2) The optically-selected QSO sample PG QSOs, BG92 (1992), Haas et al. (2003) (3) NLS1 sample Wang & Lu (2001)

73 Sample Selection QDOT IRAS galaxy sample (Lawrence et al. 1999) 1 Jy ULIRGs sample (Kim & Sanders 1998) IRAS-ROSAT cross-identification sample (Moran et al. 1996) A sample of 31 IR QSOs ( z<0.35 ) , takes a fraction of about 25% in local universe. Based on the sample, statistical results should be representative.

74 Estimation of physical parameters at low z (1) Black hole mass: (Kaspi et al. 2000) (2) Bolometric luminosity: (Kaspi et al. 2000) (3) Accretion rate: (Peterson 1997) (4)Star formation rate: (Kennicutt 1998; Lawrence et al. 1989; Cardiel et al. 2003)

75

76

77

78 High-z QSOs Current available data at radio, UV and X-ray show No any difference between low-z and high-z QSOs

79 The sample (1)Optically selected QSOs at redshift about 4 with 1.2mm observation, Omont et al. (2001) (2)Optically selected QSOs at redshift about 4 with 1.2mm observation, Carilli et al. (2001) (3)Optically selected QSOs at redshift about 2 with 1.2mm observation, Omont et al. (2003) High-z QSOs

80 T=41K, ß=1.95

81

82 Parameters estimates at high z SFR: Monochromatic luminosity at 60  m the monochromatic luminosity at 60  m from the flux density at 1.2mm by assuming the rest-frame FIR SED can be described by a greybody spectrum with the dust temperature of 41K and the dust emissivity of 1.95 Priddey & McMahon (2001). Mdot: Bolometric luminosity Vestergaard (2004 )

83

84

85

86

87 Summary IR QSOs (at both low and high redshift) are ideal laboratory for study the starburst and black hole growing process extending sample The relation of SFR/Mdot with Mbh may indicate the strong outflow from central AGN for bright QSOs

88

89

90

91

92

93

94

95

96

97 Merger Remnants Disky or Boxy Hot Gas halo Glubular Cluster

98

99

100

101

102

103

104

105 Starburst Ring

106 M82

107 Starburst starburst

108

109 CO on the optical HST image Downes & Solomon 98 The molecular emission is highly concentrated within 1kpc or even smaller, cf Arp220 Two disks are merging, as seen in the dispersion, and mm continuum

110 MAMBO/IRAM detection of redshifted far-IR/submm dust (and CO) emission from high-z QSOs Summary of results (very similar to bright Scuba SMGs) High rate of detection : ~55 sources detected  ~ 25% No significant dependence of the far-IR luminosity on z The mm/submm emission is dominated by cold dust at 40-50 K L FIR ~ 10 13 Lo  HLIRGs  SFR ~ 1000 Mo/yr Heating of cold dust by starburst or AGN, or both ? Both are viable; probably a combination of both in various proportions, but some starburst is probably always present in the sources detected at 1.2 mm (CO detections in some sources) The far-IR luminosity is weakly correlated with rest UV  L bol

111 Dense gas density ~10 5 cm -3 T ~ 100 K size R ~400-1400 pc gaz mass 1-2 10 10 Mo CO detection in QSO SDSS J1148 at z=6.42 Bertoldi et al. 03 PdBI Walter et al. 03 VLA Multi-line excitation model Resolution of CO in 2 sources VLA Walter et al. 04 CO detection in 14 high-z QSOs

112 Molecular Gas in SCUBA submm Galaxies Greve et al. (2004) 1 < z < 3.5 = 3.0 10 10 Msun ~5 times more gas and luminous, than local ULIRGs Broad FWHM linewidth Complex/interactive environment (+weak AGN) M gas significant fraction of central mass

113 E68 New generation single-pixel receivers PdB New IF processor (PV) IF transport with opt fibers (PdB) New correlator (PdB) WVR corrections Track extension (PdB) New subreflector (PV) New bolo camera (MPIfR) New gener. single-pixel receivers for PV Improved wobbler (PV) Extension of HERA 1.3-mm FPA Second station on E track or extension towards West (PdB) Mid-term projects summary decided open options

114 z D phot (Gpc) 1000 -------------------- 20 230 12 130 -------------------- z= 6 60 -------------------- z=2 16 ------------------- 0.5 3 -------------------- 0 ~ 300 million ~ 3.5 billion z ~ 7 – 20 ? - Reionization PopIII stars +1st galaxies -Formation of 1st galaxies Pop. II stars - First AGN z ~ 4 – 7 : Current frontier - Galaxy and Black-Hole early assembly - End of reionization z ~ 1.5 -4: - Peak of star formation submm sources + LBGs -Peak of QSO activity -Luminous mid-IR sour. -Proto-cluster formation z ~ 0.5-1.5 : Final phase of active SF - Mid-IR sources - Weak X-ray AGN - Cluster formation Main z ranges in the Cosmic History of galaxies

115

116 F.Combes, Maoli, Omont 1999 CO lines Continuum submm radiation J=1-0 2-1 3-2 z=5 Some kind of « negative K correction » also exists for CO detection: at  fixed (3mm window) J of redshifted detected line increases with z: at  fixed (3mm window) J of redshifted detected line increases with z: J=1-0 at z=0  J=5-4 at z=5 J=1-0 at z=0  J=5-4 at z=5 the line luminosity strongly increases with J, as long as the level is excited the line luminosity strongly increases with J, as long as the level is excited z=1 z=0.1 High-z CO Detectability 3mm window ---------- 5 ---------- 4 ---------- 3 ---------- 2 ---------- 1 ---------- 0 CO rotation lines

117 Survey deg ² filters depth total exposurenights Vega mag (dark) Very Wide * 1300 r' 24.714mn Ecliptic strip g'25.66mn Optimized for KBO detection i'24.16mn110 170 u* 25.5 6000 s g' 26.5 2500 s r' 25.7 2000 s i' 25.5 4300 s z' 24.0 7200 s 162 Deep Synoptic 4u* 27 33 hr g' 28.4 33 hr r' 28 66 hr i'27.8 132 hr z' 26 66 hr 202 CFHTLS at a glance W1: 02 18 00 ; - 07 00 00 W2: 08 54 00 ; - 04 15 00 W3: 14 17 54 ; +54 30 31 D1 02h 26m 00s -04d 30m 00s D2 10h 00m 29s 02d 12m 21s D3 14h 19m 28s +52d 40m 41s D4 22h 15m 31s -17d 44m 00s Wide Synoptic


Download ppt "The Coeval of Starburst and BH Growing X.Y.Xia Tianjin Normal University, China."

Similar presentations


Ads by Google