Presentation is loading. Please wait.

Presentation is loading. Please wait.

PowerPoint ® Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College Copyright © 2009 Pearson Education, Inc., publishing.

Similar presentations


Presentation on theme: "PowerPoint ® Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College Copyright © 2009 Pearson Education, Inc., publishing."— Presentation transcript:

1 PowerPoint ® Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings PART A 5 Skeletal Tissue

2 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings The Skeletal System  Parts of the skeletal system  Bones (skeleton)  Joints  Cartilages  Ligaments  Two subdivisions of the skeleton  Axial skeleton  Appendicular skeleton

3 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Functions of Bones  Support the body  Protect soft organs  Allow movement due to attached skeletal muscles  Store minerals and fats  Calcium and Phosphorus  Blood cell formation  Hematopoiesis

4 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Bones of the Human Body  The adult skeleton has 206 bones  Two basic types of bone tissue  Compact bone  Homogeneous  Spongy bone  Small needle-like pieces of bone  trabeculae  Many open spaces Figure 5.2b

5 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Classification of Bones on the Basis of Shape Figure 5.1

6 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Classification of Bones  Long bones  Typically longer than they are wide  Have a shaft with heads at both ends  Contain mostly compact bone  Example :  Femur  Humerus

7 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Classification of Bones Figure 5.1a

8 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Classification of Bones  Short bones  Generally cube-shape  Contain mostly spongy bone  Example :  Carpals  Tarsals  Sesamoidd bones- special type of short bones that form tendons  Example: patella

9 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Classification of Bones Figure 5.1b

10 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Classification of Bones  Flat bones  Thin, flattened, and usually curved  Two thin layers of compact bone surround a layer of spongy bone  Example :  Skull  Ribs  Sternum

11 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Classification of Bones Figure 5.1c

12 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Classification of Bones  Irregular bones  Irregular shape  Do not fit into other bone classification categories  Example :  Vertebrae  Hip bones

13 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Classification of Bones Figure 5.1d

14 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Anatomy of a Long Bone  Diaphysis  Shaft  Composed of compact bone  Epiphysis  Ends of the bone  Composed mostly of spongy bone

15 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Anatomy of a Long Bone Figure 5.2a

16 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Anatomy of a Long Bone  Periosteum  Outside covering of the diaphysis  Fibrous connective tissue membrane  Sharpey’s fibers  Secure periosteum to underlying bone  Arteries  Supply bone cells with nutrients

17 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Anatomy of a Long Bone Figure 5.2c

18 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Anatomy of a Long Bone  Articular cartilage  Covers the external surface of the epiphyses  Made of hyaline cartilage  Decreases friction at joint surfaces

19 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Anatomy of a Long Bone  Epiphyseal plate  Flat plate of hyaline cartilage seen in young, growing bone  Epiphyseal line  Remnant of the epiphyseal plate  Seen in adult bones

20 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Anatomy of a Long Bone Figure 5.2a

21 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Anatomy of a Long Bone  Medullary cavity  Cavity inside of the shaft  Contains yellow marrow (mostly fat) in adults  Contains red marrow (for blood cell formation) in infants  Yellow marrow can become red marrow if needed

22 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Anatomy of a Long Bone Figure 5.2a

23 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Bone Markings  Surface features of bones  Sites of attachments for muscles, tendons, and ligaments  Passages for nerves and blood vessels  Categories of bone markings  Projections or processes—grow out from the bone surface  Depressions or cavities—indentations

24 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Bone Markings Table 5.1 (1 of 2)

25 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Bone Markings Table 5.1 (2 of 2)

26 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Microscopic Anatomy of Bone  Osteon (Haversian system)  A unit of bone containing central canal and matrix rings  Central (Haversian) canal  Opening in the center of an osteon  Carries blood vessels and nerves  Perforating (Volkman’s) canal  Canal perpendicular to the central canal  Carries blood vessels and nerves

27 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Microscopic Anatomy of Bone Figure 5.3a

28 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Microscopic Anatomy of Bone  Lacunae  Cavities containing bone cells (osteocytes)  Arranged in concentric rings  Lamellae  Rings around the central canal  Sites of lacunae

29 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Microscopic Anatomy of Bone Figure 5.3b–c

30 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Microscopic Anatomy of Bone  Canaliculi  Tiny canals  Radiate from the central canal to lacunae  Form a transport system connecting all bone cells to a nutrient supply

31 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Microscopic Anatomy of Bone Figure 5.3b

32 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Formation of the Human Skeleton  In embryos, the skeleton is primarily hyaline cartilage  During development, much of this cartilage is replaced by bone  Cartilage remains in isolated areas  Bridge of the nose  Parts of ribs  Joints

33 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Bone Growth (Ossification)  Epiphyseal plates allow for lengthwise growth of long bones during childhood  New cartilage is continuously formed  Older cartilage becomes ossified  Cartilage is broken down  Enclosed cartilage is digested away, opening up a medullary cavity  Bone replaces cartilage through the action of osteoblasts

34 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Bone Growth (Ossification)  Bones are remodeled and lengthened until growth stops  Bones are remodeled in response to two factors  Blood calcium levels  Pull of gravity and muscles on the skeleton  Bones grow in width (called appositional growth)

35 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Steps of Endochondral Ossification  Cartilage model  Periosteum forms  Cartilage begins to calcify (ossification)  Primary ossification center forms (blood vessels) in diaphysis  Marrow cavity  2 nd ossification center forms in epiphysis

36 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Long Bone Formation and Growth Figure 5.4a Bone starting to replace cartilage Epiphyseal plate cartilage Articular cartilage Spongy bone In a childIn a fetusIn an embryo New bone forming Growth in bone width Growth in bone length Epiphyseal plate cartilage New bone forming Blood vessels Hyaline cartilage New center of bone growth Medullary cavity Bone collar Hyaline cartilage model (a)

37 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Long Bone Formation and Growth Figure 5.4a, step 1 Bone starting to replace cartilage In an embryo Bone collar Hyaline cartilage model (a)

38 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Long Bone Formation and Growth Figure 5.4a, step 2 Bone starting to replace cartilage In a fetusIn an embryo Growth in bone length Blood vessels Hyaline cartilage New center of bone growth Medullary cavity Bone collar Hyaline cartilage model (a)

39 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Long Bone Formation and Growth Figure 5.4a, step 3 Bone starting to replace cartilage Epiphyseal plate cartilage Articular cartilage Spongy bone In a childIn a fetusIn an embryo New bone forming Growth in bone width Growth in bone length Epiphyseal plate cartilage New bone forming Blood vessels Hyaline cartilage New center of bone growth Medullary cavity Bone collar Hyaline cartilage model (a)

40 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Long Bone Formation and Growth Figure 5.4b

41 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Types of Bone Cells  Osteocytes—mature bone cells  Osteoblasts—bone-forming cells  Osteoclasts—bone-destroying cells  Break down bone matrix for remodeling and release of calcium in response to parathyroid hormone  Bone remodeling is performed by both osteoblasts and osteoclasts  Called osteogenesis  By age 35 to 40, bone loss exceeds bone gain

42 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Osteogenesis  When blood Ca is too low, the parathyroid gland releases parathyroid hormone (PTH) into the blood which causes osteoclasts to break down bone and release Ca into the blood

43 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Bone Fractures  Fracture—break in a bone  Types of bone fractures  Closed (simple) fracture—break that does not penetrate the skin  Open (compound) fracture—broken bone penetrates through the skin  Complete- completely across bone  Incomplete- partial break  Greenstick- bend on one side, break on other  Common in children

44 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Bone Fractures  Linear- fracture parallel to long bone’s axis  Transverse- fracture at right angle to long bone axis  Oblique- fracture that occurs at an angle  Comminuted- bone breaks in many pieces  Common in elderly  Compression- bone is crushed  Common in porous bone, osteoporosis  Depressed- bone is pressed inward  Typical skull fracture

45 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Bone Fractures  Impacted- broken bones are forced into each other  Common when try to catch yourself  Spiral- ragged break that occurs from twisting  Common sports fracture

46 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Common Types of Fractures Table 5.2

47 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Signs of Bone Fracture  Loss of function  Pain  Soft Tissue Edema  Deformity

48 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Repair of Bone Fractures  Reduction  Realignment of bone  Closed reduction- coaxed back by Dr.  Open reduction- surgery required to put bones back  Hematoma (blood-filled swelling) is formed  Break is splinted by fibrocartilage to form a callus  Fibrocartilage callus is replaced by a bony callus  Bony callus is remodeled to form a permanent patch

49 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Stages in the Healing of a Bone Fracture Figure 5.5 Hematoma External callus Bony callus of spongy bone Healed fracture New blood vessels Internal callus (fibrous tissue and cartilage) Spongy bone trabecula Hematoma formation Fibrocartilage callus formation Bony callus formation Bone remodeling

50 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Stages in the Healing of a Bone Fracture Figure 5.5, step 1 Hematoma Hematoma formation

51 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Stages in the Healing of a Bone Fracture Figure 5.5, step 2 Hematoma External callus New blood vessels Internal callus (fibrous tissue and cartilage) Spongy bone trabecula Hematoma formation Fibrocartilage callus formation

52 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Stages in the Healing of a Bone Fracture Figure 5.5, step 3 Hematoma External callus Bony callus of spongy bone New blood vessels Internal callus (fibrous tissue and cartilage) Spongy bone trabecula Hematoma formation Fibrocartilage callus formation Bony callus formation

53 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Stages in the Healing of a Bone Fracture Figure 5.5, step 4 Hematoma External callus Bony callus of spongy bone Healed fracture New blood vessels Internal callus (fibrous tissue and cartilage) Spongy bone trabecula Hematoma formation Fibrocartilage callus formation Bony callus formation Bone remodeling


Download ppt "PowerPoint ® Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College Copyright © 2009 Pearson Education, Inc., publishing."

Similar presentations


Ads by Google