Presentation is loading. Please wait.

Presentation is loading. Please wait.

Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Seventh Edition Elaine N. Marieb Chapter.

Similar presentations


Presentation on theme: "Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Seventh Edition Elaine N. Marieb Chapter."— Presentation transcript:

1 Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Seventh Edition Elaine N. Marieb Chapter 6 The Muscular System

2 The Muscular System Slide 6.1 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Muscles are responsible for all types of body movement – they contract or shorten and are the machine of the body  Three basic muscle types are found in the body  Skeletal muscle  Cardiac muscle  Smooth muscle

3 Characteristics of Muscles Slide 6.2 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Muscle cells are elongated (muscle cell = muscle fiber)  Contraction of muscles is due to the movement of microfilaments  All muscles share some terminology  Prefix myo refers to muscle  Prefix mys refers to muscle  Prefix sarco refers to flesh

4 Skeletal Muscle Characteristics Slide 6.3 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Most are attached by tendons to bones  Cells are multinucleate  Striated – have visible banding  Voluntary – subject to conscious control  Cells are surrounded and bundled by connective tissue = great force, but tires easily

5 Connective Tissue Wrappings of Skeletal Muscle Slide 6.4a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Endomysium – around single muscle fiber  Perimysium – around a fascicle (bundle) of fibers Figure 6.1

6 Connective Tissue Wrappings of Skeletal Muscle Slide 6.4b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Epimysium – covers the entire skeletal muscle  Fascia – on the outside of the epimysium Figure 6.1

7 Skeletal Muscle Attachments Slide 6.5 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Epimysium blends into a connective tissue attachment  Tendon – cord-like structure  Aponeuroses – sheet-like structure  Sites of muscle attachment  Bones  Cartilages  Connective tissue coverings

8 Smooth Muscle Characteristics Slide 6.6 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Has no striations  Spindle-shaped cells  Single nucleus  Involuntary – no conscious control  Found mainly in the walls of hollow organs  Slow, sustained and tireless Figure 6.2a

9 Cardiac Muscle Characteristics Slide 6.7 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Has striations  Usually has a single nucleus  Joined to another muscle cell at an intercalated disc  Involuntary  Found only in the heart  Steady pace! Figure 6.2b

10 Function of Muscles Slide 6.8 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Produce movement  Maintain posture  Stabilize joints  Generate heat

11 Microscopic Anatomy of Skeletal Muscle Slide 6.9a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Cells are multinucleate  Nuclei are just beneath the sarcolemma Figure 6.3a

12 Microscopic Anatomy of Skeletal Muscle Slide 6.9b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Sarcolemma – specialized plasma membrane  Sarcoplasmic reticulum – specialized smooth endoplasmic reticulum Figure 6.3a

13 Microscopic Anatomy of Skeletal Muscle Slide 6.10a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Myofibril  Bundles of myofilaments  Myofibrils are aligned to give distrinct bands  I band = light band  A band = dark band Figure 6.3b

14 Microscopic Anatomy of Skeletal Muscle Slide 6.10b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Sarcomere  Contractile unit of a muscle fiber Figure 6.3b

15 Microscopic Anatomy of Skeletal Muscle Slide 6.11a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Organization of the sarcomere  Thick filaments = myosin filaments  Composed of the protein myosin  Has ATPase enzymes Figure 6.3c

16 Microscopic Anatomy of Skeletal Muscle Slide 6.11b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Organization of the sarcomere  Thin filaments = actin filaments  Composed of the protein actin Figure 6.3c

17 Microscopic Anatomy of Skeletal Muscle Slide 6.12a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Myosin filaments have heads (extensions, or cross bridges)  Myosin and actin overlap somewhat Figure 6.3d

18 Contraction Sequence: Sliding Filament Theory

19

20

21 Properties of Skeletal Muscle Activity (single cells or fibers) Slide 6.13 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Irritability – ability to receive and respond to a stimulus  Contractility – ability to shorten when an adequate stimulus is received

22 Nerve Stimulus to Muscles Slide 6.14 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Skeletal muscles must be stimulated by a nerve to contract (motor neruron)  Motor unit  One neuron  Muscle cells stimulated by that neuron Figure 6.4a

23 Nerve Stimulus to Muscles Slide 6.15a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Neuromuscular junctions – association site of nerve and muscle Figure 6.5b

24 Nerve Stimulus to Muscles Slide 6.15b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Synaptic cleft – gap between nerve and muscle  Nerve and muscle do not make contact  Area between nerve and muscle is filled with interstitial fluid Figure 6.5b

25 Skeletal Muscle Contraction: Mechanism

26

27 Transmission of Nerve Impulse to Muscle Slide 6.16a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Neurotransmitter – chemical released by nerve upon arrival of nerve impulse  The neurotransmitter for skeletal muscle is acetylcholine  Neurotransmitter attaches to receptors on the sarcolemma  Sarcolemma becomes permeable to sodium (Na + )

28 Transmission of Nerve Impulse to Muscle Slide 6.16b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Sodium rushing into the cell generates an action potential  Once started, muscle contraction cannot be stopped

29 The Sliding Filament Theory of Muscle Contraction Slide 6.17a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Activation by nerve causes myosin heads (crossbridges) to attach to binding sites on the thin filament  Myosin heads then bind to the next site of the thin filament Figure 6.7

30 The Sliding Filament Theory of Muscle Contraction Slide 6.17b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  This continued action causes a sliding of the myosin along the actin  The result is that the muscle is shortened (contracted) Figure 6.7

31 The Sliding Filament Theory Slide 6.18 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Figure 6.8

32 Contraction of a Skeletal Muscle Slide 6.19 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Muscle fiber contraction is “all or none”  Within a skeletal muscle, not all fibers may be stimulated during the same interval  Different combinations of muscle fiber contractions may give differing responses  Graded responses – different degrees of skeletal muscle shortening, rapid stimulus = constant contraction or tetanus

33

34 Muscle Response to Strong Stimuli Slide 6.22 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Muscle force depends upon the number of fibers stimulated  More fibers contracting results in greater muscle tension  Muscles can continue to contract unless they run out of energy

35 Energy for Muscle Contraction Slide 6.23 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Initially, muscles used stored ATP for energy  Bonds of ATP are broken to release energy  Only 4-6 seconds worth of ATP is stored by muscles  After this initial time, other pathways must be utilized to produce ATP

36 Energy for Muscle Contraction Slide 6.24 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Direct phosphorylation  Muscle cells contain creatine phosphate (CP)  CP is a high-energy molecule  After ATP is depleted, ADP is left  CP transfers energy to ADP, to regenerate ATP  CP supplies are exhausted in about 20 seconds Figure 6.10a

37 Energy for Muscle Contraction Slide 6.26a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Anaerobic glycolysis  Reaction that breaks down glucose without oxygen  Glucose is broken down to pyruvic acid to produce some ATP  Pyruvic acid is converted to lactic acid Figure 6.10b

38 Energy for Muscle Contraction Slide 6.26b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Anaerobic glycolysis (continued)  This reaction is not as efficient, but is fast  Huge amounts of glucose are needed  Lactic acid produces muscle fatigue Figure 6.10b

39 Energy for Muscle Contraction Slide 6.25 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Aerobic Respiration  Series of metabolic pathways that occur in the mitochondria  Glucose is broken down to carbon dioxide and water, releasing energy  This is a slower reaction that requires continuous oxygen Figure 6.10c

40 Muscle Fatigue and Oxygen Debt Slide 6.27 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  When a muscle is fatigued, it is unable to contract  The common reason for muscle fatigue is oxygen debt  Oxygen must be “repaid” to tissue to remove oxygen debt  Oxygen is required to get rid of accumulated lactic acid  Increasing acidity (from lactic acid) and lack of ATP causes the muscle to contract less

41 Types of Muscle Contractions Slide 6.28 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Isotonic contractions  Myofilaments are able to slide past each other during contractions  The muscle shortens  Isometric contractions  Tension in the muscles increases  The muscle is unable to shorten

42 Rate 2-3 times faster SR uptake of Ca 2+ ATP splitting Anaerobic/Fatigue easily Power lifting Fast/delicate Sprint Fiber Contraction Speed: Fast Twitch

43 Fiber Contraction Speed: Oxidative Fast & Slow Oxidative Fast Twitch –Intermediate speed –Anaerobic & aerobic Slow Twitch: Aerobic, less fatigue –More mitochondria –More capillaries –Myoglobin –Endurance activities –Postural muscles

44 Fiber Contraction Speed: Fast Twitch

45 Muscle Tone Slide 6.29 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Some fibers are contracted even in a relaxed muscle  Different fibers contract at different times to provide muscle tone  The process of stimulating various fibers is under involuntary control

46 Muscles and Body Movements Slide 6.30a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Movement is attained due to a muscle moving an attached bone Figure 6.12

47 Muscles and Body Movements Slide 6.30b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Muscles are attached to at least two points  Origin – attachment to a moveable bone  Insertion – attachment to an immovable bone Figure 6.12

48 Effects of Exercise on Muscle Slide 6.31 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Results of increased muscle use  Increase in muscle size  Increase in muscle strength  Increase in muscle efficiency  Muscle becomes more fatigue resistant

49 Types of Ordinary Body Movements Slide 6.32 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Flexion – decreases angle of joint and brings two bones closer together  Extension- opposite of flexion  Rotation- movement of a bone in longitudinal axis, shaking head “no”  Abduction/Adduction (see slides)  Circumduction (see slides)

50 Body Movements Slide 6.33 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Figure 6.13

51 Left: Abduction – moving the leg away from the midline Above – Adduction- moving toward the midline Right: Circumduction: cone- shaped movement, proximal end doesn’t move, while distal end moves in a circle.

52 Types of Muscles Slide 6.35 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Prime mover – muscle with the major responsibility for a certain movement  Antagonist – muscle that opposes or reverses a prime mover  Synergist – muscle that aids a prime mover in a movement and helps prevent rotation

53 Naming of Skeletal Muscles Slide 6.36a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Direction of muscle fibers  Example: rectus (straight)  Relative size of the muscle  Example: maximus (largest)

54 Naming of Skeletal Muscles Slide 6.36b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Location of the muscle  Example: many muscles are named for bones (e.g., temporalis)  Number of origins  Example: triceps (three heads)

55 Naming of Skeletal Muscles Slide 6.37 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Location of the muscles origin and insertion  Example: sterno (on the sternum)  Shape of the muscle  Example: deltoid (triangular)  Action of the muscle  Example: flexor and extensor (flexes or extends a bone)

56 Head and Neck Muscles Slide 6.38 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Figure 6.14

57 Trunk Muscles Slide 6.39 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Figure 6.15

58 Deep Trunk and Arm Muscles Slide 6.40 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Figure 6.16

59 Muscles of the Pelvis, Hip, and Thigh Slide 6.41 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Figure 6.18c

60 Muscles of the Lower Leg Slide 6.42 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Figure 6.19

61 Superficial Muscles: Anterior Slide 6.43 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Figure 6.20

62 Superficial Muscles: Posterior Slide 6.44 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Figure 6.21

63 Disorders relating to the Muscular System Muscular Dystrophy: inherited, muscle enlarge due to increased fat and connective tissue, but fibers degenerate and atrophy Duchenne MD: lacking a protein to maintain the sarcolemma Myasthemia Gravis: progressive weakness due to a shortage of acetylcholine receptors

64 http://www.wiley.com/college/pratt/047139 3878/student/animations/actin_myosin/actin _myosin.swf


Download ppt "Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Seventh Edition Elaine N. Marieb Chapter."

Similar presentations


Ads by Google