Download presentation
Presentation is loading. Please wait.
Published byEileen Johns Modified over 9 years ago
1
Parity-Violation with Electrons: Theoretical Perspectives M.J. Ramsey-Musolf
2
PV: Past, Present, & Future 1970’sSLAC DISStandard Model Atomic PVsin 2 W ~ 10% 1980’sMainz 8 BePV eq couplings MIT 12 C ~ 10% Prehistory
3
PV: Past, Present, & Future 2000’sSLAC MollerStandard Model & beyond JLabQWeaksin 2 W < 1% APVAnapole moment JLabG A N MainzHWI ( S=0): d A VVCS: A n 1990’sMITG s E,M ~ few % JLabG A & rad corrections Mainz n (r) APV sin 2 W ~ 1% Anapole moment Modern Era
4
2010’sJLabDIS-ParityStandard Model & beyond Moller (2)sin 2 W < 1% 2020’sNLCMoller (3) sin 2 W < 0.1% Future PV: Past, Present, & Future
5
Quarks, Gluons, & the Light Elements How does QCD make hadronic matter? 1.0 1.5 2.0 2.5 qq Mesons L = 0123 4 Hybrids exotic nonets PV & strange quarks Gluonic effects GPD’s: “Wigner Distributions” (X. Ji) Pentaquark, m q -dependence of nuclear properties Lattice QCD
6
Strange Quarks in the Nucleon: What have we learned? Effects in are much less pronounced than in, Jaffe ‘89 Hammer, Meissner, Drechsel ‘95 Dispersion Relations Narrow Resonances High Q 2 ansatz OZI violation
7
Strange Quarks in the Nucleon: What have we learned? Effects in are much less pronounced than in, HAPPEX SAMPLE
8
Strange Quarks in the Nucleon: What have we learned? Strange quarks don’t appear in Quark Model picture of the nucleon Perturbation theory may not apply QCD / m s ~ 1No HQET m K / ~ 1/2 PT ? Symmetry is impotent J s = J B + 2 J EM, I=0 Unknown constants Theory: how do we understand dynamics of small ss effects in vector current channel ? Challenge to understand QCD at deep, detailed level
9
Q 2 -dependence of G s M G 0 projected Dispersion theory Chiral perturbation theory “reasonable range” for slope SAMPLE 2003 Happex projected Lattice QCD theory
10
Lattice Computations Dong, Liu, & Williams (1998)Lewis, Wilcox, Woloshyn (2003) Quenched QCD Wilson fermions 2000 gauge configurations 60-noise estimate/config Quenched QCD Wilson fermions 100 gauge configurations 300-noise estimate/config See also Leinweber et al
11
Lattice Computations Lattice calculation Charge symmetry Measured octet m.m.’s Chiral symmetry Unquenching Leinweber et al
12
What PT can (cannot) say Strange magnetism as an illustration Unknown low- energy constant (incalculable) Kaon loop contributions (calculable) Ito, R-M Hemmert, Meissner, Kubis Hammer, Zhu, Puglia, R-M
13
What PT can (cannot) say Strange magnetism as an illustration { } LO, parameter freeNLO, cancellation NLO, unknown LEC
14
Dispersion theory Strong interaction scattering amplitudes e+ e - K + K -, etc. Slope of G M s Jaffe Hammer, Drechsel, R-M
15
Perturbation theory (1-loop) Hammer & R-M Dispersion theory All orders
16
resonance Perturbation theory (1-loop) Hammer & R-M All orders Dispersion theory S-quarks are not inert Non-perturbative effects dominate (LEC’s)
17
Are there higher mass excitations of s s pairs? Do they enhance or cancel low-lying excitations? Can’t do the whole integral ? Dispersion theory Models & exp’t suggest cancellations Experiment & lattice will give an answer
18
Combining PT, dispersion theory, & lattice QCD RARA “Reasonable range”: lattice & disp rel SAMPLE
19
Radiative Corrections & the Hadronic Weak Interaction G A e N ! PV photo- and electro-production (threshold) Vector analyzing power ( )
20
at Q 2 =0.1 (GeV/c) 2 R. Hasty et al., Science 290, 2117 (2000). s-quarks contribute less than 5% (1 ) to the proton’s magnetic form factor. proton’s axial structure is complicated! Models for s Radiative corrections
21
Axial Radiative Corrections “Anapole” effects : Hadronic Weak Interaction + Nucleon Green’s Fn : Analogous effects in neutron -decay, PC electron scattering…
22
“Anapole” Effects Zhu, Puglia, Holstein, R-M ( PT) Maekawa & van Kolck ( PT) Riska (Model) Zhu et al. Hadronic PV Can’t account for a large reduction in G e A
23
Nuclear PV Effects PV NN interaction Carlson, Paris, Schiavilla Liu, Prezeau, Ramsey-Musolf Suppressed by ~ 1000
24
at Q 2 =0.1 (GeV/c) 2 125 MeV: no background similar sensitivity to G A e (T=1) SAMPLE Results R. Hasty et al., Science 290, 2117 (2000). 200 MeV update 2003: Improved EM radiative corr. Improved acceptance model Correction for background s-quarks contribute less than 5% (1 ) to the proton’s magnetic moment. 200 MeV data Mar 2003 D2D2 H2H2 Zhu, et al. E. Beise, U Maryland Radiative corrections
25
Transition Axial Form Factor Off Diagonal Goldberger-Treiman Relation Zhu, R-M O (p 2 ) chiral corrections ~ few % N ! N ~ 5% Rad corrections, “anapole” ~ 25% Study G A N (Q 2 )/ G A N (0)
26
Measuring G A N (Q 2 ) G A N & “d ”” ” Axial response, G A N only A LR ~ Q 2 (1-2sin 2 W ) Zhu, Maekawa, Sacco, Holstein, R-M Nonzero A LR (Q 2 = 0)
27
Weak interactions of s-quarks are puzzling Hyperon weak decays S-Wave: Parity-violating P-Wave: Parity- conserving symmetry not sufficient
28
Weak interactions of s-quarks are puzzling M1 (PC) E1 (PV) Th’y Exp’t
29
Weak interactions of s-quarks are puzzling Resonance saturation Holstein & Borasoy S 11 Roper S-Wave P-Wave Fit matrix elements
30
Weak interactions of s-quarks are puzzling Resonance saturation Holstein & Borasoy S 11 Roper S-Wave P-Wave Fit matrix elements S/P wave fit Close gap with BB’
31
Weak interactions of s-quarks are puzzling Natural Fit Is deviation from QCD-based expectations due to presence of s-quarks or more fundamental dynamics?
32
We have a S=0 probe Use PV to filter out EM transition Zhu, Maekawa, Holstein, MR-M PV, E1 Amplitude PV Asymmetry Large N C, spin-flavor SU(4) Finite N C Low energy constant
33
We have a S=0 probe Naïve dimensional analysis (NDA) Resonance saturation d ~ g d ~ 25g
34
Measuring d d = 100 g enhanced H W S=0 d = 0, G A N only A LR ~ Q 2 (1-2sin 2 W ) Zhu, Maekawa, Sacco, Holstein, R-M
35
N! Transition Measure Q 2 -dependence of A LR to learn d G A N Q 2 )/ G A N 0) R A MINERVA: G A N (0) ?
36
Vector Analyzing Power T-odd, P-even correlation Doubly virtual compton scattering (VVCS): new probe of nucleon structure Implications for radiative corrections in other processes: G E p /G M p, -decay… SAMPLE, Mainz, JLab experiments What specifically could we learn? V ud
37
Vector Analyzing Power + V= : VVCS Re M ( M box M cross )Rosenbluth Im M M box VAP V=W,Z: Electroweak VVCS Re M V ( M V box M V cross ) -decay, R A,… Im M V M V box -decay T-violation Direct probe
38
Vector Analyzing Power Mott: M N !1 SAMPLE EFT to O (p 2 ) Diaconescu, R-M I=1, r 2 O (p 0 ) O (p 4 ) 146 0
39
Vector Analyzing Power Constrained by SAMPLE 30 0 Dynamical ’s?
40
Radiative Corrections & the Hadronic Weak Interaction G A e N ! PV photo- and electro-production (threshold) Vector analyzing power ( ) Theory for R A good to ~ 25% Further test of R A d & H W qq EFT for low energy good to ~ 25%; more tests! New window on electroweak VVCS: -decay, sin 2 W,…
41
Weak Mixing Angle: Scale Dependence sin 2 W (GeV) SLAC E158 (ee)JLab Q-Weak (ep) e + e - LEP, SLD Atomic PV N deep inelastic Czarnecki, Marciano Erler, Kurylov, MR-M
42
Comparing Q w e and Q W p -> e + e SUSY dark matter is Majorana RPV 95% CL fit to weak decays, M W, etc. Kurylov, Su, MR-M SUSY loops
43
Comparing Q w e and Q W p Erler, Kurylov, R-M Q W P = 0.0716Q W e = 0.0449 Experiment SUSY Loops E 6 Z / boson RPV SUSY Leptoquarks SM
44
sin 2 W (GeV) SLAC E158 (ee)JLab Q-Weak (ep) e + e - LEP, SLD Atomic PV N deep inelastic Additional PV electron scattering ideas DIS-Parity, JLab Moller, JLab DIS-Parity, SLAC Czarnecki, Marciano Erler et al. Linear Collider e - e -
45
Comparing Q w e and Q W p SUSY dark matter Kurylov, R-M, Su SUSY loops RPV 95% CL E158 &Q- Weak JLab Moller Linear collider
46
Comparing A d DIS and Q w p,e e p RPV Loops SUSY effects
47
Comparing Q w e and Q W p SUSY dark matter Kurylov, R-M, Su SUSY loops RPV 95% CL E158 &Q- Weak JLab Moller Linear collider “DIS Parity”
48
Higher Twist “Pollution” E=11 GeV =12.5 0 Different PDF fits Sacco, R-M preliminary ~0.4%
49
Higher Twist “Pollution” Castorina & Mulders Sacco & R-M preliminary Open issues QCD evolution Double handbag Moment inversion
50
Tasks for the “modern era” & future Strange quarks Finish the experimental program Credible, unquenched lattice calculations Rad corrections Further tests of electroweak VVCS with N! , VAP Theory: quark mass (m ) dependence Measure d SM & new physics DIS-Parity: Is there significant I-violation as suggested by NuTeV? Theory: how big is twist pollution? Theory: relating n (r) & APV Hardronic PV Lots of new exp’t & theory….
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.